Skip to main content
Top
Published in: Journal of Materials Science 10/2018

21-02-2018 | Computation

Insight into solid-solution strengthened bulk and stacking faults properties in Ti alloys: a comprehensive first-principles study

Authors: William Yi Wang, Ying Zhang, Jinshan Li, Chengxiong Zou, Bin Tang, Hao Wang, Deye Lin, Jun Wang, Hongchao Kou, Dongsheng Xu

Published in: Journal of Materials Science | Issue 10/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present work, the effect of solute atoms on the lattice parameters, atomic volume, stacking fault energies (\( \gamma_{\text{SF}} \)), bulk modulus, and bonding structures of HCP Ti is studied comprehensively by first-principles calculations. Here, the alloying effects on the growth fault (I1), deformation fault (I2) and extrinsic fault (EF) are considered, with the solute atoms (X = Al, Cr, Mo, Nb, and V) commonly utilized in the high-strength Ti-7333 and Ti-5553 alloys selected. It is found that the stacking fault energies of pure Ti increase in the order of \( \gamma_{\text{I1}} \) < \( \gamma_{\text{I2}} \) < \( \gamma_{\text{EF}} \), which is proportional to their corresponding numbers of fault layers. The variation tendencies of \( \gamma_{\text{SF}} \) of the binary Ti–X alloys are in the order of Al > V > Cr > Mo > Nb for I1 and I2 and V > Al > Cr > Nb > Mo for EF, respectively. The bonding charge density is utilized to characterize the electronic redistributions caused by the fault layers and the lattice distortions. It is presented that the rod-type bonds of the non-fault layers change into the tetrahedral-shaped bonds of fault layers, displaying the local HCP–FCC-type phase transformation. With the addition of various solute atoms with different atomic size and valance electrons, the bond strengths of Ti–Al and Ti–Nb are weaker than those of Ti–Cr and Ti–Mo as there are fewer densities of bonding electrons. This work gains some insights into the atomic and electronic basis for the solid-solution strengthened bulk and stacking faults of HCP Ti, providing fundamental information to the development of advanced high-strength Ti alloys.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Banerjee D, Williams JC (2013) Perspectives on titanium science and technology. Acta Mater 61:844–879CrossRef Banerjee D, Williams JC (2013) Perspectives on titanium science and technology. Acta Mater 61:844–879CrossRef
2.
go back to reference Chen G, Peng Y, Zheng G, Qi Z, Wang M, Yu H, Dong C, Liu CT (2016) Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat Mater 15:876–881CrossRef Chen G, Peng Y, Zheng G, Qi Z, Wang M, Yu H, Dong C, Liu CT (2016) Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat Mater 15:876–881CrossRef
3.
go back to reference Hao YL, Li SJ, Sun BB, Sui ML, Yang R (2007) Ductile titanium alloy with low Poisson’s ratio. Phys Rev Lett 98:216405CrossRef Hao YL, Li SJ, Sun BB, Sui ML, Yang R (2007) Ductile titanium alloy with low Poisson’s ratio. Phys Rev Lett 98:216405CrossRef
4.
go back to reference Fan JK, Kou HC, Lai MJ, Tang B, Chang H, Li JS (2013) Characterization of hot deformation behavior of anew near beta titanium alloy: Ti-7333. Mater Design 49:945–952CrossRef Fan JK, Kou HC, Lai MJ, Tang B, Chang H, Li JS (2013) Characterization of hot deformation behavior of anew near beta titanium alloy: Ti-7333. Mater Design 49:945–952CrossRef
5.
go back to reference Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants: a review. Prog Mater Sci 54:397–425CrossRef Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants: a review. Prog Mater Sci 54:397–425CrossRef
6.
go back to reference Li T, Kent D, Sha G, Stephenson LT, Ceguerra AV, Ringer SP, Dargusch MS, Cairney JM (2016) New insights into the phase transformations to isothermal ω and ω-assisted α in near β–Ti alloys. Acta Mater 106:353–366CrossRef Li T, Kent D, Sha G, Stephenson LT, Ceguerra AV, Ringer SP, Dargusch MS, Cairney JM (2016) New insights into the phase transformations to isothermal ω and ω-assisted α in near β–Ti alloys. Acta Mater 106:353–366CrossRef
7.
go back to reference Nakashima PNH, Smith AE, Etheridge J, Muddle BC (2011) The bonding electron density in aluminum. Science 331:1583–1586CrossRef Nakashima PNH, Smith AE, Etheridge J, Muddle BC (2011) The bonding electron density in aluminum. Science 331:1583–1586CrossRef
8.
go back to reference Ogata S, Li J, Yip S (2002) Ideal pure shear strength of aluminum and copper. Science 298:807–811CrossRef Ogata S, Li J, Yip S (2002) Ideal pure shear strength of aluminum and copper. Science 298:807–811CrossRef
9.
go back to reference Yu Q, Qi L, Tsuru T, Traylor R, Rugg D, Morris JW Jr, Asta M, Chrzan DC, Minor AM (2015) Origin of dramatic oxygen solute strengthening effect in titanium. Science 347:635–639CrossRef Yu Q, Qi L, Tsuru T, Traylor R, Rugg D, Morris JW Jr, Asta M, Chrzan DC, Minor AM (2015) Origin of dramatic oxygen solute strengthening effect in titanium. Science 347:635–639CrossRef
10.
go back to reference Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O (2013) The high-throughput highway to computational materials design. Nat Mater 12:191–201CrossRef Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O (2013) The high-throughput highway to computational materials design. Nat Mater 12:191–201CrossRef
11.
go back to reference Hu QM, Yang R (2006) Mechanical properties of structural materials from first-principles. Curr Opin Solid State Mater Sci 10:19–25CrossRef Hu QM, Yang R (2006) Mechanical properties of structural materials from first-principles. Curr Opin Solid State Mater Sci 10:19–25CrossRef
12.
13.
go back to reference Kwasniak P, Garbacz H, Kurzydlowski KJ (2016) Solid solution strengthening of hexagonal titanium alloys: restoring forces and stacking faults calculated from first principles. Acta Mater 102:304–314CrossRef Kwasniak P, Garbacz H, Kurzydlowski KJ (2016) Solid solution strengthening of hexagonal titanium alloys: restoring forces and stacking faults calculated from first principles. Acta Mater 102:304–314CrossRef
14.
go back to reference Jiang S, Wang H, Wu Y, Liu X, Chen H, Yao M, Gault B, Ponge D, Raabe D, Hirata A, Chen M, Wang Y, Lu Z (2017) Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 544:460–464CrossRef Jiang S, Wang H, Wu Y, Liu X, Chen H, Yao M, Gault B, Ponge D, Raabe D, Hirata A, Chen M, Wang Y, Lu Z (2017) Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 544:460–464CrossRef
15.
go back to reference Vitos L, Abrikosov IA, Johansson B (2001) Anisotropic lattice distortions in random alloys from first-principles theory. Phys Rev Lett 87:156401CrossRef Vitos L, Abrikosov IA, Johansson B (2001) Anisotropic lattice distortions in random alloys from first-principles theory. Phys Rev Lett 87:156401CrossRef
16.
go back to reference Meher S, Carroll LJ, Pollock TM, Carroll MC (2016) Solute partitioning in multi-component γ/γ’ Co-Ni-base superalloys with near-zero lattice misfit. Scr Mater 113:185–189CrossRef Meher S, Carroll LJ, Pollock TM, Carroll MC (2016) Solute partitioning in multi-component γ/γ’ Co-Ni-base superalloys with near-zero lattice misfit. Scr Mater 113:185–189CrossRef
17.
go back to reference Wang WY, Xue F, Zhang Y, Shang S-L, Wang Y, Darling KA, Kecskes LJ, Li J, Hui X, Feng Q, Liu Z-K (2017) Atomic and electronic basis for the solutes strengthened (010) anti-phase boundary of L12 Co3(Al, TM): a comprehensive first-principles study. Acta Mater 145:30–40CrossRef Wang WY, Xue F, Zhang Y, Shang S-L, Wang Y, Darling KA, Kecskes LJ, Li J, Hui X, Feng Q, Liu Z-K (2017) Atomic and electronic basis for the solutes strengthened (010) anti-phase boundary of L12 Co3(Al, TM): a comprehensive first-principles study. Acta Mater 145:30–40CrossRef
18.
go back to reference Minor AM (2015) Metallurgy: Starting and stopping dislocations. Nat Mater 14:866–867CrossRef Minor AM (2015) Metallurgy: Starting and stopping dislocations. Nat Mater 14:866–867CrossRef
19.
20.
go back to reference Trinkle DR, Woodward C (2005) The chemistry of deformation: how solutes soften pure metals. Science 310:1665–1667CrossRef Trinkle DR, Woodward C (2005) The chemistry of deformation: how solutes soften pure metals. Science 310:1665–1667CrossRef
21.
go back to reference Wang WY, Wang Y, Shang SL, Darling KA, Kim H, Tang B, Kou HC, Mathaudhu SN, Hui XD, Li JS, Kecskes LJ, Liu Z-K (2017) Strengthening Mg by self-dispersed nano-lamellar faults. Mater Res Lett 5:415–425CrossRef Wang WY, Wang Y, Shang SL, Darling KA, Kim H, Tang B, Kou HC, Mathaudhu SN, Hui XD, Li JS, Kecskes LJ, Liu Z-K (2017) Strengthening Mg by self-dispersed nano-lamellar faults. Mater Res Lett 5:415–425CrossRef
22.
go back to reference Salloom R, Banerjee R, Srinivasan SG (2016) Effect of beta-stabilizer elements on stacking faults energies and ductility of alpha-titanium using first-principles calculations. J Appl Phys 120:175105CrossRef Salloom R, Banerjee R, Srinivasan SG (2016) Effect of beta-stabilizer elements on stacking faults energies and ductility of alpha-titanium using first-principles calculations. J Appl Phys 120:175105CrossRef
23.
go back to reference Zong H, Ding X, Lookman T, Sun J (2016) Twin boundary activated α → ω phase transformation in titanium under shock compression. Acta Mater 115:1–9CrossRef Zong H, Ding X, Lookman T, Sun J (2016) Twin boundary activated α → ω phase transformation in titanium under shock compression. Acta Mater 115:1–9CrossRef
24.
go back to reference McLaughlin R, Sun D, Zhang C, Groesbeck M, Vardeny ZV (2017) Optical detection of transverse spin-Seebeck effect in permalloy film using Sagnac interferometer microscopy. Phys Rev B 95:180401CrossRef McLaughlin R, Sun D, Zhang C, Groesbeck M, Vardeny ZV (2017) Optical detection of transverse spin-Seebeck effect in permalloy film using Sagnac interferometer microscopy. Phys Rev B 95:180401CrossRef
25.
go back to reference Hennig RG, Trinkle DR, Bouchet J, Srinivasan SG, Albers RC, Wilkins JW (2005) Impurities block the alpha to omega martensitic transformation in titanium. Nat Mater 4:129–133CrossRef Hennig RG, Trinkle DR, Bouchet J, Srinivasan SG, Albers RC, Wilkins JW (2005) Impurities block the alpha to omega martensitic transformation in titanium. Nat Mater 4:129–133CrossRef
26.
go back to reference Gilman J (2003) Electronic basis of the strength of materials. Cambridge U. Press, New York Gilman J (2003) Electronic basis of the strength of materials. Cambridge U. Press, New York
27.
go back to reference Wang WY, Shang SL, Wang Y, Han F, Darling KA, Wu Y, Xie X, Senkov ON, Li J, Hui XD, Dahmen KA, Liaw PK, Kecskes LJ, Liu Z-K (2017) Atomic and electronic basis for the serrations of refractory high-entropy alloys. NPJ Comput Mater 3:23CrossRef Wang WY, Shang SL, Wang Y, Han F, Darling KA, Wu Y, Xie X, Senkov ON, Li J, Hui XD, Dahmen KA, Liaw PK, Kecskes LJ, Liu Z-K (2017) Atomic and electronic basis for the serrations of refractory high-entropy alloys. NPJ Comput Mater 3:23CrossRef
28.
go back to reference Kioussis N, Herbranson M, Collins E, Eberhart ME (2002) Topology of electronic charge density and energetics of planar faults in FCC metals. Phys Rev Lett 88:125501CrossRef Kioussis N, Herbranson M, Collins E, Eberhart ME (2002) Topology of electronic charge density and energetics of planar faults in FCC metals. Phys Rev Lett 88:125501CrossRef
29.
go back to reference Shang SL, Wang WY, Zhou BC, Wang Y, Darling KA, Kecskes LJ, Mathaudhu SN, Liu ZK (2014) Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: a first-principles study of shear deformation. Acta Mater 67:168–180CrossRef Shang SL, Wang WY, Zhou BC, Wang Y, Darling KA, Kecskes LJ, Mathaudhu SN, Liu ZK (2014) Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: a first-principles study of shear deformation. Acta Mater 67:168–180CrossRef
30.
go back to reference Brozek C, Sun F, Vermaut P, Millet Y, Lenain A, Embury D, Jacques PJ, Prima F (2016) A β–titanium alloy with extra high strain-hardening rate: design and mechanical properties. Scr Mater 114:60–64CrossRef Brozek C, Sun F, Vermaut P, Millet Y, Lenain A, Embury D, Jacques PJ, Prima F (2016) A β–titanium alloy with extra high strain-hardening rate: design and mechanical properties. Scr Mater 114:60–64CrossRef
31.
go back to reference Abdel-Hady M, Hinoshita K, Morinaga M (2006) General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr Mater 55:477–480CrossRef Abdel-Hady M, Hinoshita K, Morinaga M (2006) General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr Mater 55:477–480CrossRef
32.
go back to reference Saito T, Furuta T, Hwang J-H, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y, Sakuma T (2003) Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300:464–467CrossRef Saito T, Furuta T, Hwang J-H, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y, Sakuma T (2003) Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300:464–467CrossRef
33.
go back to reference Zhang X, Kou H, Li J, Zhang F, Zhou L (2013) Evolution of the secondary α phase morphologies during isothermal heat treatment in Ti-7333 alloy. J Alloy Compd 577:516–522CrossRef Zhang X, Kou H, Li J, Zhang F, Zhou L (2013) Evolution of the secondary α phase morphologies during isothermal heat treatment in Ti-7333 alloy. J Alloy Compd 577:516–522CrossRef
34.
go back to reference Hua K, Li J, Kou H, Fan J, Sun M, Tang B (2016) Phase precipitation behavior during isothermal deformation in β-quenched near beta titanium alloy Ti-7333. J Alloy Compd 671:381–388CrossRef Hua K, Li J, Kou H, Fan J, Sun M, Tang B (2016) Phase precipitation behavior during isothermal deformation in β-quenched near beta titanium alloy Ti-7333. J Alloy Compd 671:381–388CrossRef
35.
go back to reference Shekhar S, Sarkar R, Kar SK, Bhattacharjee A (2015) Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy, Ti-5Al-5V-5Mo-3Cr. Mater Des 66:596–610CrossRef Shekhar S, Sarkar R, Kar SK, Bhattacharjee A (2015) Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy, Ti-5Al-5V-5Mo-3Cr. Mater Des 66:596–610CrossRef
36.
go back to reference Nag S, Banerjee R, Srinivasan R, Hwang JY, Harper M, Fraser HL (2009) ω-Assisted nucleation and growth of a precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy. Acta Mater 57:2136–2147CrossRef Nag S, Banerjee R, Srinivasan R, Hwang JY, Harper M, Fraser HL (2009) ω-Assisted nucleation and growth of a precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy. Acta Mater 57:2136–2147CrossRef
37.
go back to reference Kolli RP, Joost WJ, Ankem S (2015) Phase stability and stress-induced transformations in beta titanium alloys. JOM 67:1273–1280CrossRef Kolli RP, Joost WJ, Ankem S (2015) Phase stability and stress-induced transformations in beta titanium alloys. JOM 67:1273–1280CrossRef
38.
go back to reference Zhan H, Zeng W, Wang G, Kent D, Dargusch M (2015) On the deformation mechanisms and strain rate sensitivity of a metastable β Ti-Nb alloy. Scr Mater 107:34–37CrossRef Zhan H, Zeng W, Wang G, Kent D, Dargusch M (2015) On the deformation mechanisms and strain rate sensitivity of a metastable β Ti-Nb alloy. Scr Mater 107:34–37CrossRef
39.
go back to reference Xing H, Sun J (2008) Mechanical twinning and omega transition by <111> {112} shear in a metastable β titanium alloy. Appl Phys Lett 93:031908CrossRef Xing H, Sun J (2008) Mechanical twinning and omega transition by <111> {112} shear in a metastable β titanium alloy. Appl Phys Lett 93:031908CrossRef
40.
go back to reference Hu Q-M, Yang R (2013) Basal-plane stacking fault energy of hexagonal close-packed metals based on the Ising model. Acta Mater 61:1136–1145CrossRef Hu Q-M, Yang R (2013) Basal-plane stacking fault energy of hexagonal close-packed metals based on the Ising model. Acta Mater 61:1136–1145CrossRef
41.
go back to reference Van Swygenhoven H, Derlet PM, Froseth AG (2004) Stacking fault energies and slip in nanocrystalline metals. Nat Mater 3:399–403CrossRef Van Swygenhoven H, Derlet PM, Froseth AG (2004) Stacking fault energies and slip in nanocrystalline metals. Nat Mater 3:399–403CrossRef
42.
go back to reference Wang WY, Shang SL, Wang Y, Mei Z-G, Darling KA, Kecskes LJ, Mathaudhu SN, Hui XD, Liu Z-K (2014) Effects of alloying elements on stacking faults energies and electronic structures of binary Mg alloys: a first-principles study. Mater Res Lett 2:29–36CrossRef Wang WY, Shang SL, Wang Y, Mei Z-G, Darling KA, Kecskes LJ, Mathaudhu SN, Hui XD, Liu Z-K (2014) Effects of alloying elements on stacking faults energies and electronic structures of binary Mg alloys: a first-principles study. Mater Res Lett 2:29–36CrossRef
43.
go back to reference Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRef Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRef
44.
go back to reference Kresse G, Furthmuller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50CrossRef Kresse G, Furthmuller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50CrossRef
45.
go back to reference Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef
46.
go back to reference Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRef Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRef
47.
go back to reference Wang Y, Chen LQ, Liu ZK, Mathaudhu SN (2010) First-principles calculations of twin-boundary and stacking-fault energies in magnesium. Scr Mater 62:646–649CrossRef Wang Y, Chen LQ, Liu ZK, Mathaudhu SN (2010) First-principles calculations of twin-boundary and stacking-fault energies in magnesium. Scr Mater 62:646–649CrossRef
48.
go back to reference Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621CrossRef Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621CrossRef
49.
go back to reference Blochl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49:16223–16233CrossRef Blochl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49:16223–16233CrossRef
50.
go back to reference Birch F (1978) Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high-pressures and 300 degree K. J Geophys Res 83:1257–1268CrossRef Birch F (1978) Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high-pressures and 300 degree K. J Geophys Res 83:1257–1268CrossRef
51.
go back to reference Shang SL, Saengdeejing A, Mei ZG, Kim DE, Zhang H, Ganeshan S, Wang Y, Liu ZK (2010) First-principles calculations of pure elements: equations of state and elastic stiffness constants. Comput Mater Sci 48:813–826CrossRef Shang SL, Saengdeejing A, Mei ZG, Kim DE, Zhang H, Ganeshan S, Wang Y, Liu ZK (2010) First-principles calculations of pure elements: equations of state and elastic stiffness constants. Comput Mater Sci 48:813–826CrossRef
52.
go back to reference Wang WY, Darling KA, Wang Y, Shang S-L, Kecskes LJ, Hui XD, Liu Z-K (2016) Power law scaled hardness of Mn strengthened nanocrystalline AlMn non-equilibrium solid solutions. Scr Mater 120:31–36CrossRef Wang WY, Darling KA, Wang Y, Shang S-L, Kecskes LJ, Hui XD, Liu Z-K (2016) Power law scaled hardness of Mn strengthened nanocrystalline AlMn non-equilibrium solid solutions. Scr Mater 120:31–36CrossRef
53.
go back to reference Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276CrossRef Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276CrossRef
54.
go back to reference Nie JF, Zhu YM, Liu JZ, Fang XY (2013) Periodic segregation of solute atoms in fully coherent twin boundaries. Science 340:957–960CrossRef Nie JF, Zhu YM, Liu JZ, Fang XY (2013) Periodic segregation of solute atoms in fully coherent twin boundaries. Science 340:957–960CrossRef
55.
go back to reference Yoo MH (1981) Slip, twinning, and fracture in hexagonal close-packed metals. Metall Trans A 12:409–418CrossRef Yoo MH (1981) Slip, twinning, and fracture in hexagonal close-packed metals. Metall Trans A 12:409–418CrossRef
56.
go back to reference Wang Y, Curtarolo S, Jiang C, Arroyave R, Wang T, Ceder G, Chen LQ, Liu ZK (2004) Ab initio lattice stability in comparison with CALPHAD lattice stability. CALPHAD 28:79–90CrossRef Wang Y, Curtarolo S, Jiang C, Arroyave R, Wang T, Ceder G, Chen LQ, Liu ZK (2004) Ab initio lattice stability in comparison with CALPHAD lattice stability. CALPHAD 28:79–90CrossRef
57.
go back to reference Salem AA, Kalidindi SR, Doherty RD (2003) Strain hardening of titanium: role of deformation twinning. Acta Mater 51:4225–4237CrossRef Salem AA, Kalidindi SR, Doherty RD (2003) Strain hardening of titanium: role of deformation twinning. Acta Mater 51:4225–4237CrossRef
58.
go back to reference Zhang H, Shang SL, Wang Y, Saengdeejing A, Chen LQ, Liu ZK (2010) First-principles calculations of the elastic, phonon and thermodynamic properties of Al12Mg17. Acta Mater 58:4012–4018CrossRef Zhang H, Shang SL, Wang Y, Saengdeejing A, Chen LQ, Liu ZK (2010) First-principles calculations of the elastic, phonon and thermodynamic properties of Al12Mg17. Acta Mater 58:4012–4018CrossRef
59.
go back to reference Wang WY, Shang SL, Wang Y, Darling KA, Mathaudhu SN, Hui XD, Liu ZK (2012) Electron localization morphology of the stacking faults in Mg: a first-principles study. Chem Phys Lett 551:121–125CrossRef Wang WY, Shang SL, Wang Y, Darling KA, Mathaudhu SN, Hui XD, Liu ZK (2012) Electron localization morphology of the stacking faults in Mg: a first-principles study. Chem Phys Lett 551:121–125CrossRef
60.
go back to reference Dai Y, Li JH, Liu BX (2009) Long-range empirical potential model: extension to hexagonal close-packed metals. J Phys Condes Matter 21:385402CrossRef Dai Y, Li JH, Liu BX (2009) Long-range empirical potential model: extension to hexagonal close-packed metals. J Phys Condes Matter 21:385402CrossRef
61.
go back to reference Wang WY, Shang SL, Wang Y, Darling KA, Kecskes LJ, Mathaudhu SN, Hui XD, Liu Z-K (2014) Electronic structures of long periodic stacking order structures in Mg: A first-principles study. J Alloy Compd 586:656–662CrossRef Wang WY, Shang SL, Wang Y, Darling KA, Kecskes LJ, Mathaudhu SN, Hui XD, Liu Z-K (2014) Electronic structures of long periodic stacking order structures in Mg: A first-principles study. J Alloy Compd 586:656–662CrossRef
62.
go back to reference Yan J-Y, Olson GB (2016) Computational thermodynamics and kinetics of displacive transformations in titanium-based alloys. J Alloy Compd 673:441–454CrossRef Yan J-Y, Olson GB (2016) Computational thermodynamics and kinetics of displacive transformations in titanium-based alloys. J Alloy Compd 673:441–454CrossRef
63.
go back to reference Poty A, Raulot JM, Xu H, Bai J, Schuman C, Lecomte JS, Philippe MJ, Esling C (2011) Classification of the critical resolved shear stress in the hexagonal-close-packed materials by atomic simulation: application to alpha-zirconium and alpha-titanium. J Appl Phys 110:014905CrossRef Poty A, Raulot JM, Xu H, Bai J, Schuman C, Lecomte JS, Philippe MJ, Esling C (2011) Classification of the critical resolved shear stress in the hexagonal-close-packed materials by atomic simulation: application to alpha-zirconium and alpha-titanium. J Appl Phys 110:014905CrossRef
64.
go back to reference Yin B, Wu Z, Curtin WA (2017) Comprehensive first-principles study of stable stacking faults in hcp metals. Acta Mater 123:223–234CrossRef Yin B, Wu Z, Curtin WA (2017) Comprehensive first-principles study of stable stacking faults in hcp metals. Acta Mater 123:223–234CrossRef
65.
go back to reference Magali B, Nathalie T, Joseph M (2013) Density functional theory investigations of titanium γ-surfaces and stacking faults. Model Simul Mater Sci 21:15009–15025CrossRef Magali B, Nathalie T, Joseph M (2013) Density functional theory investigations of titanium γ-surfaces and stacking faults. Model Simul Mater Sci 21:15009–15025CrossRef
66.
go back to reference Wu X, Wang R, Wang S (2010) Generalized-stacking-fault energy and surface properties for HCP metals: a first-principles study. Appl Surf Sci 256:3409–3412CrossRef Wu X, Wang R, Wang S (2010) Generalized-stacking-fault energy and surface properties for HCP metals: a first-principles study. Appl Surf Sci 256:3409–3412CrossRef
67.
go back to reference Hennig RG, Lenosky TJ, Trinkle DR, Rudin SP, Wilkins JW (2008) Classical potential describes martensitic phase transformations between the α, β, and ω titanium phases. Phys Rev B 78:054121CrossRef Hennig RG, Lenosky TJ, Trinkle DR, Rudin SP, Wilkins JW (2008) Classical potential describes martensitic phase transformations between the α, β, and ω titanium phases. Phys Rev B 78:054121CrossRef
68.
go back to reference Ghazisaeidi M, Trinkle DR (2014) Interaction of oxygen interstitials with lattice faults in Ti. Acta Mater 76:82–86CrossRef Ghazisaeidi M, Trinkle DR (2014) Interaction of oxygen interstitials with lattice faults in Ti. Acta Mater 76:82–86CrossRef
69.
go back to reference Kwasniak P, Muzyk M, Garbacz H, Kurzydlowski KJ (2013) Influence of C, H, N, and O interstitial atoms on deformation mechanism in titanium: first principles calculations of generalized stacking fault energy. Mater Lett 94:92–94CrossRef Kwasniak P, Muzyk M, Garbacz H, Kurzydlowski KJ (2013) Influence of C, H, N, and O interstitial atoms on deformation mechanism in titanium: first principles calculations of generalized stacking fault energy. Mater Lett 94:92–94CrossRef
70.
go back to reference Domain C (2006) Ab initio modelling of defect properties with substitutional and interstitials elements in steels and Zr alloys. J Nucl Mater 35:11–19 Domain C (2006) Ab initio modelling of defect properties with substitutional and interstitials elements in steels and Zr alloys. J Nucl Mater 35:11–19
71.
go back to reference Guo Z, Miodownik AP, Saunders N, Schille JP (2006) Influence of stacking-fault energy on high temperature creep of alpha titanium alloys. Scr Mater 54:2175–2178CrossRef Guo Z, Miodownik AP, Saunders N, Schille JP (2006) Influence of stacking-fault energy on high temperature creep of alpha titanium alloys. Scr Mater 54:2175–2178CrossRef
72.
go back to reference Kittel C, McEuen P, McEuen P (1996) Introduction to solid state physics. Wiley, New York Kittel C, McEuen P, McEuen P (1996) Introduction to solid state physics. Wiley, New York
Metadata
Title
Insight into solid-solution strengthened bulk and stacking faults properties in Ti alloys: a comprehensive first-principles study
Authors
William Yi Wang
Ying Zhang
Jinshan Li
Chengxiong Zou
Bin Tang
Hao Wang
Deye Lin
Jun Wang
Hongchao Kou
Dongsheng Xu
Publication date
21-02-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 10/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2140-8

Other articles of this Issue 10/2018

Journal of Materials Science 10/2018 Go to the issue

Premium Partners