Skip to main content
Top
Published in: Journal of Materials Science 27/2020

18-06-2020 | Energy materials

Insights into the elevated electrochemical performance and kinetic characteristics of magnesium-substituted Na3V2−xMgx(PO4)3/C with superior rate capability and long lifespan

Authors: Yanjun Chen, Jun Cheng, Yanzhong Wang, Chao Wang, Zhenfeng He, Dan Li, Li Guo

Published in: Journal of Materials Science | Issue 27/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Na3V2(PO4)3 has been pursued to be a prospective cathode for SIBs because of its outstanding structural stability. Nevertheless, the extensive application of Na3V2(PO4)3 is impeded by its poor electronic conductivity and inferior Na+ migration ability. Herein, a promising Mg-doped Na3V2−xMgx(PO4)3/C composite is prepared by a facile carbon-thermal reduction route. The substitution of magnesium onto vanadium site downsizes the particle, providing shorter pathway for the migration of Na+ and electron. The introduction of Mg2+ generates beneficial holes to facilitate the electronic diffusion efficiently. A superior electrochemical performance of Na3V1.93Mg0.07(PO4)3/C sample can be achieved due to the multiple synergetic effects. It delivers a high specific capacity of 113.5 mAh g−1 at 0.1 C. A high reversible capacity of 95 mAh g−1 can be obtained at 10 C rate, and the retention is 84.6% after 1000 cycles. Moreover, a comprehensive GITT analysis is conducted to give a better understanding of the elevated electrochemical properties for Na3V1.93Mg0.07(PO4)3/C: The migration of Na+ suffers from the intense interactions arising from the phase transfer during the potential plateau (~ 3.4 V). The minimum values of DNa+ at ~ 3.4 V for Na3V1.93Mg0.07(PO4)3/C are one order magnitude higher than that of undoped sample, implying the improved kinetics from magnesium substitution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Dunn B, Kamath H, Tarascon J (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935 Dunn B, Kamath H, Tarascon J (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935
2.
go back to reference Nayak P, Yang L, Brehm W, Adelhelm P (2018) From Lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed 57:102–120 Nayak P, Yang L, Brehm W, Adelhelm P (2018) From Lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed 57:102–120
3.
go back to reference Ni Q, Bai Y, Wu F, Wu C (2017) Polyanion-type electrode materials for sodium-ion batteries. Adv Sci 4:1600275 Ni Q, Bai Y, Wu F, Wu C (2017) Polyanion-type electrode materials for sodium-ion batteries. Adv Sci 4:1600275
4.
go back to reference Kim S-W, Seo D-H, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721 Kim S-W, Seo D-H, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721
5.
go back to reference Han M, Gonzalo E, Singh G, Rojo T (2015) A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ Sci 8:81–102 Han M, Gonzalo E, Singh G, Rojo T (2015) A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ Sci 8:81–102
6.
go back to reference Xiang X, Zhang K, Chen J (2015) Recent advances and prospects of cathode materials for sodium-ion batteries. Adv Mater 27:5343–5364 Xiang X, Zhang K, Chen J (2015) Recent advances and prospects of cathode materials for sodium-ion batteries. Adv Mater 27:5343–5364
7.
go back to reference Wang P, You Y, Yin Y, Guo Y (2018) Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv Energy Mater 8:1701912 Wang P, You Y, Yin Y, Guo Y (2018) Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv Energy Mater 8:1701912
8.
go back to reference Yuan DD, Wang YX, Cao YL, Ai XP, Yang HX (2015) Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion Batteries. ACS Appl Mater Interf 7:8585–8591 Yuan DD, Wang YX, Cao YL, Ai XP, Yang HX (2015) Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion Batteries. ACS Appl Mater Interf 7:8585–8591
9.
go back to reference Caballero A, Hernán L, Morales J, Sánchez L, Santos-Peña J, Aranda MAG (2002) Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells. J Mater Chem 12:1142–1147 Caballero A, Hernán L, Morales J, Sánchez L, Santos-Peña J, Aranda MAG (2002) Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells. J Mater Chem 12:1142–1147
10.
go back to reference Berthelot R, Carlier D, Delmas C (2011) Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat Mater 10:74–80 Berthelot R, Carlier D, Delmas C (2011) Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat Mater 10:74–80
11.
go back to reference Komaba S, Mikumo T, Ogata A (2008) Electrochemical activity of nanocrystalline Fe3O4 in aprotic Li and Na salt electrolytes. Electrochem Commun 10:1276–1279 Komaba S, Mikumo T, Ogata A (2008) Electrochemical activity of nanocrystalline Fe3O4 in aprotic Li and Na salt electrolytes. Electrochem Commun 10:1276–1279
12.
go back to reference Laffont L, Sauvage F, Tarascon J-M, Baudrin E (2007) Study of the insertion/deinsertion mechanism of sodium into Na0@44MnO2. Inorg Chem 46:3289–3294 Laffont L, Sauvage F, Tarascon J-M, Baudrin E (2007) Study of the insertion/deinsertion mechanism of sodium into Na0@44MnO2. Inorg Chem 46:3289–3294
13.
go back to reference Wang W, Xu Q, Liu H, Wang Y, Xia Y (2017) A flexible symmetric sodium full cell constructed using the bipolar material Na3V2(PO4)3. J Mater Chem A 5:8440–8450 Wang W, Xu Q, Liu H, Wang Y, Xia Y (2017) A flexible symmetric sodium full cell constructed using the bipolar material Na3V2(PO4)3. J Mater Chem A 5:8440–8450
14.
go back to reference Wei T, Yang G, Wang C (2017) Bottom-up assembly of strongly–coupled Na3V2(PO4)3/C into hierarchically porous hollow nanospheres for high-rate and -stable Na-ion storage. Nano Energy 39:363–370 Wei T, Yang G, Wang C (2017) Bottom-up assembly of strongly–coupled Na3V2(PO4)3/C into hierarchically porous hollow nanospheres for high-rate and -stable Na-ion storage. Nano Energy 39:363–370
15.
go back to reference Zhao L, Zhao H, Du Z, Chen N, Chang X, Zhang Z, Gao F, Zajac AT, Swierczek K (2018) Computational and experimental understanding of Al-doped Na3V2−xAlx(PO4)3 cathode material for sodium ion batteries: electronic structure, ion dynamics and electrochemical properties. Electrochim Acta 282:510–519 Zhao L, Zhao H, Du Z, Chen N, Chang X, Zhang Z, Gao F, Zajac AT, Swierczek K (2018) Computational and experimental understanding of Al-doped Na3V2−xAlx(PO4)3 cathode material for sodium ion batteries: electronic structure, ion dynamics and electrochemical properties. Electrochim Acta 282:510–519
16.
go back to reference Jian Z, Yuan C, Han W, Lu X, Gu L, Xi X, Hu Y, Li H, Chen W, Chen D, Ikuhara Y, Chen L (2014) Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries. Adv Func Mater 24:4265–4272 Jian Z, Yuan C, Han W, Lu X, Gu L, Xi X, Hu Y, Li H, Chen W, Chen D, Ikuhara Y, Chen L (2014) Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries. Adv Func Mater 24:4265–4272
17.
go back to reference Chen Y, Xu Y, Sun X, Li L, Li L (2018) Off-stoichiometric Na3V2−x(PO4)3/C cathode composites with stable lifetime for sodium ion batteries. Ceram Int 44:13055–13064 Chen Y, Xu Y, Sun X, Li L, Li L (2018) Off-stoichiometric Na3V2−x(PO4)3/C cathode composites with stable lifetime for sodium ion batteries. Ceram Int 44:13055–13064
18.
go back to reference Xu Y, Wei Q, Xu C, Li Q, An Q, Zhang P, Sheng J, Zhou L, Mai L (2016) Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Advanced Energy Materials 6:1600389 Xu Y, Wei Q, Xu C, Li Q, An Q, Zhang P, Sheng J, Zhou L, Mai L (2016) Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Advanced Energy Materials 6:1600389
19.
go back to reference Chen Y, Xu Y, Sun X, Wang C (2018) Effect of Al substitution on the enhanced electrochemical performance and strong structure stability of Na3V2(PO4)3/C composite cathode for sodium-ion batteries. J Power Sources 375:82–92 Chen Y, Xu Y, Sun X, Wang C (2018) Effect of Al substitution on the enhanced electrochemical performance and strong structure stability of Na3V2(PO4)3/C composite cathode for sodium-ion batteries. J Power Sources 375:82–92
20.
go back to reference Lim S, Han DW, Nam DH, Hong KS, Eom JY, Ryu WH, Kwon HS (2014) Structural enhancement of Na3V2(PO4)3/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries. J Mater Chem A 2:19623–19632 Lim S, Han DW, Nam DH, Hong KS, Eom JY, Ryu WH, Kwon HS (2014) Structural enhancement of Na3V2(PO4)3/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries. J Mater Chem A 2:19623–19632
21.
go back to reference Zhu Q, Chang X, Sun N, Liu H, Chen R, Wu F, Xu B (2017) Microorganism-moulded pomegranate-like Na3V2(PO4)3/C nanocomposite for advanced sodium-ion batteries. J Mater Chem A 5:9982–9990 Zhu Q, Chang X, Sun N, Liu H, Chen R, Wu F, Xu B (2017) Microorganism-moulded pomegranate-like Na3V2(PO4)3/C nanocomposite for advanced sodium-ion batteries. J Mater Chem A 5:9982–9990
22.
go back to reference Nie P, Zhu Y, Shen L, Pang G, Xu G, Dong S, Dou H, Zhang X (2014) From biomolecule to Na3V2(PO4)3/nitrogen-decorated carbon hybrids: highly reversible cathodes for sodium-ion batteries. J Mater Chem A 2:18606–18612 Nie P, Zhu Y, Shen L, Pang G, Xu G, Dong S, Dou H, Zhang X (2014) From biomolecule to Na3V2(PO4)3/nitrogen-decorated carbon hybrids: highly reversible cathodes for sodium-ion batteries. J Mater Chem A 2:18606–18612
23.
go back to reference Zhang J, Fang Y, Xiao L, Qian J, Cao Y, Ai X, Yang H (2017) Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries. ACS Appl Mater Interfaces 9:7177–7184 Zhang J, Fang Y, Xiao L, Qian J, Cao Y, Ai X, Yang H (2017) Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries. ACS Appl Mater Interfaces 9:7177–7184
24.
go back to reference Yao Y, Jiang Y, Yang H, Sun X, Yu Y (2017) Na3V2(PO4)3 coated by N-doped carbon from ionic liquid as cathode materials for high rate and long-life Na-ion batteries. Nanoscale 9:10880–10885 Yao Y, Jiang Y, Yang H, Sun X, Yu Y (2017) Na3V2(PO4)3 coated by N-doped carbon from ionic liquid as cathode materials for high rate and long-life Na-ion batteries. Nanoscale 9:10880–10885
25.
go back to reference Gao R, Tan R, Han L, Zhao Y, Wang Z, Yang L, Pan F (2017) Nanofiber networks of Na3V2(PO4)3 as a cathode material for high performance all-solid-state sodium-ion batteries. J Mater Chem A 5:5273–5277 Gao R, Tan R, Han L, Zhao Y, Wang Z, Yang L, Pan F (2017) Nanofiber networks of Na3V2(PO4)3 as a cathode material for high performance all-solid-state sodium-ion batteries. J Mater Chem A 5:5273–5277
26.
go back to reference Aragon M, Lavela P, Ortiz GF, Tirado JL (2015) Effect of iron substitution in the electrochemical performance of Na3V2(PO4)3 as cathode for Na-ion batteries. J Electrochem Soc 162:3077–3083 Aragon M, Lavela P, Ortiz GF, Tirado JL (2015) Effect of iron substitution in the electrochemical performance of Na3V2(PO4)3 as cathode for Na-ion batteries. J Electrochem Soc 162:3077–3083
27.
go back to reference Aragon M, Lavela P, Ortiz GF, Tirado JL (2015) Benefits of chromium substitution in Na3V2(PO4)3 as a potential candidate for sodium-ion batteries. ChemElectroChem 2:995–1002 Aragon M, Lavela P, Ortiz GF, Tirado JL (2015) Benefits of chromium substitution in Na3V2(PO4)3 as a potential candidate for sodium-ion batteries. ChemElectroChem 2:995–1002
28.
go back to reference Lalere F, Seznec V, Courty M, David R, Chotard JN, Masquelier C (2015) Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution. J Mater Chem A 3(31):16198–16205 Lalere F, Seznec V, Courty M, David R, Chotard JN, Masquelier C (2015) Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution. J Mater Chem A 3(31):16198–16205
29.
go back to reference Chen Y, Xu Y, Sun X, Zhang B, He S, Li L, Wang C (2018) Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries. J Power Sources 378:423–432 Chen Y, Xu Y, Sun X, Zhang B, He S, Li L, Wang C (2018) Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries. J Power Sources 378:423–432
30.
go back to reference Wang X, Niu C, Meng J, Hu P, Xu X, Wei X, Zhou L, Zhao K, Luo W, Yan M, Mai L (2015) Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv Energy Mater 5:1500716 Wang X, Niu C, Meng J, Hu P, Xu X, Wei X, Zhou L, Zhao K, Luo W, Yan M, Mai L (2015) Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv Energy Mater 5:1500716
31.
go back to reference Senguttuvan P, Rousse G, Arroyo-y-de-Dompablo ME, Vezin H, Tarascon J-M, Palacin MR (2013) Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple. J Am Chem Soc 135:3897–3903 Senguttuvan P, Rousse G, Arroyo-y-de-Dompablo ME, Vezin H, Tarascon J-M, Palacin MR (2013) Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple. J Am Chem Soc 135:3897–3903
32.
go back to reference An Q, Xiong F, Wei Q, Sheng J, He L, Ma D, Yao Y, Mai L (2015) Nanoflake-assembled hierarchical Na3V2(PO4)3/C microflowers: superior Li storage performance and insertion/extraction mechanism. Adv Energy Mater 5:1401963 An Q, Xiong F, Wei Q, Sheng J, He L, Ma D, Yao Y, Mai L (2015) Nanoflake-assembled hierarchical Na3V2(PO4)3/C microflowers: superior Li storage performance and insertion/extraction mechanism. Adv Energy Mater 5:1401963
33.
go back to reference Aragón M, Lavela P, Alcántara R, Tirado J (2015) Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries. Electrochim Acta 180:824–830 Aragón M, Lavela P, Alcántara R, Tirado J (2015) Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries. Electrochim Acta 180:824–830
34.
go back to reference Zheng Q, Yi H, Liu W, Li X, Zhang H (2017) Improving the electrochemical performance of Na3V2(PO4)3 cathode in sodium ion batteries through Ce/V substitution based on rational design and synthesis optimization. Electrochim Acta 238:288–297 Zheng Q, Yi H, Liu W, Li X, Zhang H (2017) Improving the electrochemical performance of Na3V2(PO4)3 cathode in sodium ion batteries through Ce/V substitution based on rational design and synthesis optimization. Electrochim Acta 238:288–297
35.
go back to reference Bi L, Li X, Liu X, Zheng Q, Lin D (2019) Enhanced cycling stability and rate capability in a la-doped Na3V2(PO4)3/C cathode for high-performance sodium ion batteries. ACS Sustain Chem Eng 7:7693–7699 Bi L, Li X, Liu X, Zheng Q, Lin D (2019) Enhanced cycling stability and rate capability in a la-doped Na3V2(PO4)3/C cathode for high-performance sodium ion batteries. ACS Sustain Chem Eng 7:7693–7699
36.
go back to reference Jiang H, Cai X, Wang Z, Zhang L, Zhou L, Lai L, Liu X (2019) Selection of graphene dopants for Na3V2(PO4)3 graphene composite as high rate, ultra long-life sodium-ion battery cathodes. Electrochim Acta 306:558–567 Jiang H, Cai X, Wang Z, Zhang L, Zhou L, Lai L, Liu X (2019) Selection of graphene dopants for Na3V2(PO4)3 graphene composite as high rate, ultra long-life sodium-ion battery cathodes. Electrochim Acta 306:558–567
37.
go back to reference Wang Q, Wang Q, Zhang M, Han B, Zhou C, Chen Y, Lv G (2019) A first-principles investigation of the influence of polyanionic boron doping on the stability and electrochemical behavior of Na3V2(PO4)3. J Mol Model 25:96 Wang Q, Wang Q, Zhang M, Han B, Zhou C, Chen Y, Lv G (2019) A first-principles investigation of the influence of polyanionic boron doping on the stability and electrochemical behavior of Na3V2(PO4)3. J Mol Model 25:96
38.
go back to reference Zheng L, Xue Y, Deng L, Wu G, Hao S, Wang Z (2019) Na3V2(PO4)3 with specially designed carbon framework as high performance cathode for sodium-ion batteries. Ceram Int 45:4637–4644 Zheng L, Xue Y, Deng L, Wu G, Hao S, Wang Z (2019) Na3V2(PO4)3 with specially designed carbon framework as high performance cathode for sodium-ion batteries. Ceram Int 45:4637–4644
39.
go back to reference Liu X, Feng G, Wang E, Chen H, Wu Z, Xiang W, Zhong Y, Chen Y, Guo X, Zhong B (2019) Insight into preparation of Fe-doped Na3V2(PO4)3@C from aspects of particle morphology design, crystal structure modulation, and carbon graphitization regulation. ACS Appl Mater Interfaces 11:12421–12430 Liu X, Feng G, Wang E, Chen H, Wu Z, Xiang W, Zhong Y, Chen Y, Guo X, Zhong B (2019) Insight into preparation of Fe-doped Na3V2(PO4)3@C from aspects of particle morphology design, crystal structure modulation, and carbon graphitization regulation. ACS Appl Mater Interfaces 11:12421–12430
40.
go back to reference Li H, Yu X, Bai Y, Wu F, Wu C, Liu L, Yang X (2015) Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries. J Mater Chem A 3:9578–9586 Li H, Yu X, Bai Y, Wu F, Wu C, Liu L, Yang X (2015) Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries. J Mater Chem A 3:9578–9586
41.
go back to reference Si L, Yuan Z, Hu L, Zhu Y, Qian Y (2014) Uniform and continuous carbon coated sodium vanadium phosphate cathode materials for sodium-ion battery. J Power Sources 272:880–885 Si L, Yuan Z, Hu L, Zhu Y, Qian Y (2014) Uniform and continuous carbon coated sodium vanadium phosphate cathode materials for sodium-ion battery. J Power Sources 272:880–885
42.
go back to reference Kim H, Lim H, Kim H, Kim K, Byun D, Choi W (2019) Polydopamine-derived N-doped carbon-wrapped Na3V2(PO4)3 cathode with superior rate capability and cycling stability for sodium-ion batteries. Nano research 12:397–404 Kim H, Lim H, Kim H, Kim K, Byun D, Choi W (2019) Polydopamine-derived N-doped carbon-wrapped Na3V2(PO4)3 cathode with superior rate capability and cycling stability for sodium-ion batteries. Nano research 12:397–404
43.
go back to reference Chen L, Zhao Y, Liu S, Zhao L (2017) Hard carbon wrapped Na3V2(PO4)3@C porous composite extending cycling lifespan for sodium-ion batteries. ACS Appl Mater Interfaces 9:44485–44493 Chen L, Zhao Y, Liu S, Zhao L (2017) Hard carbon wrapped Na3V2(PO4)3@C porous composite extending cycling lifespan for sodium-ion batteries. ACS Appl Mater Interfaces 9:44485–44493
44.
go back to reference Xu G, Sun G (2016) Mg2 + -doped Na3V2(PO4)3/C decorated with graphene sheets : an ultrafast Na-storage cathode for advanced energy storage. Ceram Int 42:14774–14781 Xu G, Sun G (2016) Mg2 + -doped Na3V2(PO4)3/C decorated with graphene sheets : an ultrafast Na-storage cathode for advanced energy storage. Ceram Int 42:14774–14781
45.
go back to reference Liang X, Ou X, Zheng F, Pan Q, Xiong X, Hu R, Yang C, Liu M (2017) Surface modification of Na3V2(PO4)3 by nitrogen and sulfur dual-doped carbon layer with advanced sodium storage property. ACS Appl Mater Interfaces 9:13151–13162 Liang X, Ou X, Zheng F, Pan Q, Xiong X, Hu R, Yang C, Liu M (2017) Surface modification of Na3V2(PO4)3 by nitrogen and sulfur dual-doped carbon layer with advanced sodium storage property. ACS Appl Mater Interfaces 9:13151–13162
46.
go back to reference Zhu Q, Cheng H, Zhang X, He L, Hu L, Yang J, Chen Q, Lu Z (2018) Improvement in electrochemical performance of Na3V2(PO4)3/C cathode material for sodium-ion batteries by K-Ca co-doping. Electrochim Acta 281:208–217 Zhu Q, Cheng H, Zhang X, He L, Hu L, Yang J, Chen Q, Lu Z (2018) Improvement in electrochemical performance of Na3V2(PO4)3/C cathode material for sodium-ion batteries by K-Ca co-doping. Electrochim Acta 281:208–217
47.
go back to reference Zhou Z, Li N, Zhang C, Chen X, Xu F, Peng C (2018) Na3V2(PO4)3 nanoparticles encapsulated in carbon nanofibers with excellent Na+ storage for sodium-ion batteries. Solid State lonics 326:77–81 Zhou Z, Li N, Zhang C, Chen X, Xu F, Peng C (2018) Na3V2(PO4)3 nanoparticles encapsulated in carbon nanofibers with excellent Na+ storage for sodium-ion batteries. Solid State lonics 326:77–81
48.
go back to reference Zheng L, Xue Y, Liu B, Zhou Y, Hao S, Wang Z (2017) High performance Na3V2(PO4)3 cathode prepared by a facile solution evaporation method for sodium-ion batteries. Ceram Int 43:4950–4956 Zheng L, Xue Y, Liu B, Zhou Y, Hao S, Wang Z (2017) High performance Na3V2(PO4)3 cathode prepared by a facile solution evaporation method for sodium-ion batteries. Ceram Int 43:4950–4956
49.
go back to reference Aragón MJ, Gutiérrez J, Klee R, Lavela P, Alcántara R, Tirado JL (2017) On the effect of carbon content for achieving a high performing Na3V2(PO4)3/C nanocomposite as cathode for sodium-ion batteries. J Electroanal Chem 784:47–54 Aragón MJ, Gutiérrez J, Klee R, Lavela P, Alcántara R, Tirado JL (2017) On the effect of carbon content for achieving a high performing Na3V2(PO4)3/C nanocomposite as cathode for sodium-ion batteries. J Electroanal Chem 784:47–54
50.
go back to reference Chu Z, Yue C (2016) Graphene oxide wrapped Na3V2(PO4)3/C nanocomposite as superior cathode material for sodium-ion batteries. Ceram Int 42:820–827 Chu Z, Yue C (2016) Graphene oxide wrapped Na3V2(PO4)3/C nanocomposite as superior cathode material for sodium-ion batteries. Ceram Int 42:820–827
51.
go back to reference Mao J, Luo C, Gao T, Fan X, Wang C (2015) Scalable synthesis of Na3V2(PO4)3/C porous hollow spheres as a cathode for Na-ion batteries. J Mater Chem A 3:10378–10385 Mao J, Luo C, Gao T, Fan X, Wang C (2015) Scalable synthesis of Na3V2(PO4)3/C porous hollow spheres as a cathode for Na-ion batteries. J Mater Chem A 3:10378–10385
52.
go back to reference Zhu Q, Wang M, Nan B, Shi H, Zhang X, Deng Y, Wang L, Chen Q, Lu Z (2017) Core/shell nanostructured Na3V2(PO4)3/C/TiO2 composite nanofibers as a stable anode for sodium-ion batteries. J Power Sources 362:147–159 Zhu Q, Wang M, Nan B, Shi H, Zhang X, Deng Y, Wang L, Chen Q, Lu Z (2017) Core/shell nanostructured Na3V2(PO4)3/C/TiO2 composite nanofibers as a stable anode for sodium-ion batteries. J Power Sources 362:147–159
53.
go back to reference Li Y, Zhou X, Bai Y, Chen G, Wang Z, Li H, Wu F, Wu C (2017) Building an electronic bridge via Ag decoration to enhance kinetics of iron fluoride cathode in lithium-ion batteries. ACS Appl Mater Interfaces 9:19852–19860 Li Y, Zhou X, Bai Y, Chen G, Wang Z, Li H, Wu F, Wu C (2017) Building an electronic bridge via Ag decoration to enhance kinetics of iron fluoride cathode in lithium-ion batteries. ACS Appl Mater Interfaces 9:19852–19860
54.
go back to reference Rui XH, Ding N, Liu J, Li C, Chen CH (2010) Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim Acta 55:2384–2390 Rui XH, Ding N, Liu J, Li C, Chen CH (2010) Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim Acta 55:2384–2390
55.
go back to reference Guo JZ, Wang PF, Wu XL, Zhang XH, Yan Q, Chen H, Zhang JP, Guo YG (2017) High-energy/power and low-temperature cathode for sodium-ion Batteries: in situ XRD study and superior full-cell performance. Adv Mater 29:1701968 Guo JZ, Wang PF, Wu XL, Zhang XH, Yan Q, Chen H, Zhang JP, Guo YG (2017) High-energy/power and low-temperature cathode for sodium-ion Batteries: in situ XRD study and superior full-cell performance. Adv Mater 29:1701968
56.
go back to reference Tang K, Yu X, Sun J, Li H, Huang X (2011) Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim Acta 56:4869–4875 Tang K, Yu X, Sun J, Li H, Huang X (2011) Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim Acta 56:4869–4875
Metadata
Title
Insights into the elevated electrochemical performance and kinetic characteristics of magnesium-substituted Na3V2−xMgx(PO4)3/C with superior rate capability and long lifespan
Authors
Yanjun Chen
Jun Cheng
Yanzhong Wang
Chao Wang
Zhenfeng He
Dan Li
Li Guo
Publication date
18-06-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 27/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04962-3

Other articles of this Issue 27/2020

Journal of Materials Science 27/2020 Go to the issue

Premium Partners