Skip to main content
Top

2019 | OriginalPaper | Chapter

Instabilities in Extreme Magnetoconvection

Authors : Oleg Zikanov, Yaroslav Listratov, Xuan Zhang, Valentin Sviridov

Published in: Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermal convection in an electrically conducting fluid (for example, a liquid metal) in the presence of a static magnetic field is considered in this chapter. The focus is on the extreme states of the flow, in which both buoyancy and Lorentz forces are very strong. It is argued that the instabilities occurring in such flows are often of unique and counter-intuitive nature due to the action of the magnetic field, which suppresses conventional turbulence and gives preference to two-dimensional instability modes not appearing in more conventional convection systems. Tools of numerical analysis suitable for such flows are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdou, M.A., Team, T.A.: Exploring novel high power density concepts for attractive fusion systems. Fusion Eng. Des. 45, 145–167 (1999)CrossRef Abdou, M.A., Team, T.A.: Exploring novel high power density concepts for attractive fusion systems. Fusion Eng. Des. 45, 145–167 (1999)CrossRef
2.
go back to reference Abdou, M., Morley, N.B., Smolentsev, S., Ying, A., Malang, S., Rowcliffe, A., Ulrickson, M.: Blanket/first wall challenges and required R&D on the pathway to DEMO. Fusion Eng. Des. 100, 2–43 (2015)CrossRef Abdou, M., Morley, N.B., Smolentsev, S., Ying, A., Malang, S., Rowcliffe, A., Ulrickson, M.: Blanket/first wall challenges and required R&D on the pathway to DEMO. Fusion Eng. Des. 100, 2–43 (2015)CrossRef
3.
go back to reference Batchelor, G.K., Nitsche, J.M.: Instability of stratified fluid in a vertical cylinder. J. Fluid Mech. 252, 419–448 (1993)MathSciNetCrossRef Batchelor, G.K., Nitsche, J.M.: Instability of stratified fluid in a vertical cylinder. J. Fluid Mech. 252, 419–448 (1993)MathSciNetCrossRef
4.
go back to reference Boeck, T., Krasnov, D., Thess, A., Zikanov, O.: Large-scale intermittency of liquid-metal channel flow in a magnetic field. Phys. Rev. Lett. 101, 244,501 (2008) Boeck, T., Krasnov, D., Thess, A., Zikanov, O.: Large-scale intermittency of liquid-metal channel flow in a magnetic field. Phys. Rev. Lett. 101, 244,501 (2008)
5.
go back to reference Calzavarini, E., Doering, C.R., Gibbon, J.D., Lohse, D., Tanabe, A., Toschi, F.: Exponentially growing solutions of homogeneous Rayleigh-Bénard flow. Phys. Rev. E 73, R035,301 (2006) Calzavarini, E., Doering, C.R., Gibbon, J.D., Lohse, D., Tanabe, A., Toschi, F.: Exponentially growing solutions of homogeneous Rayleigh-Bénard flow. Phys. Rev. E 73, R035,301 (2006)
6.
go back to reference Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961) Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)
7.
go back to reference Cioni, S., Chaumat, S., Sommeria, J.: Effect of a vertical magnetic field on turbulent rayleigh-bénard convection. Phys. Rev. E 62(4), R4520 (2000)CrossRef Cioni, S., Chaumat, S., Sommeria, J.: Effect of a vertical magnetic field on turbulent rayleigh-bénard convection. Phys. Rev. E 62(4), R4520 (2000)CrossRef
8.
go back to reference Davidson, P.A.: Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2016) Davidson, P.A.: Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2016)
9.
go back to reference Di Piazza, I., Ciofalo, M.: MHD free convection in a liquid-metal filled cubic enclosure. I. differential heating. Int. J. Heat Mass Trans. 45(7), 1477–1492 (2002) Di Piazza, I., Ciofalo, M.: MHD free convection in a liquid-metal filled cubic enclosure. I. differential heating. Int. J. Heat Mass Trans. 45(7), 1477–1492 (2002)
10.
go back to reference Di Piazza, I., Ciofalo, M.: MHD free convection in a liquid-metal filled cubic enclosure. II. internal heating. Int. J. Heat Mass Trans. 45(7), 1493–1511 (2002) Di Piazza, I., Ciofalo, M.: MHD free convection in a liquid-metal filled cubic enclosure. II. internal heating. Int. J. Heat Mass Trans. 45(7), 1493–1511 (2002)
11.
go back to reference Dolan, T.J., Moir, R.W., Manheimer, W., Cadwallader, L.C., Neumann, M.J.: Magnetic Fusion Technology. Springer, Berlin (2013) Dolan, T.J., Moir, R.W., Manheimer, W., Cadwallader, L.C., Neumann, M.J.: Magnetic Fusion Technology. Springer, Berlin (2013)
12.
go back to reference Dong, S., Krasnov, D., Boeck, T.: Secondary energy growth and turbulence suppression in conducting channel flow with streamwise magnetic field. Phys. Fluids 24(7), 074,101 (2012)CrossRef Dong, S., Krasnov, D., Boeck, T.: Secondary energy growth and turbulence suppression in conducting channel flow with streamwise magnetic field. Phys. Fluids 24(7), 074,101 (2012)CrossRef
13.
go back to reference Evtikhin, V.A., Lyublinski, I.E., Vertkov, A.V., Yezhov, N.I., Khripunov, B.I., Sotnikov, S.M., Mirnov, S.V., Petrov, V.B.: Energy removal and MHD performance of lithium capillary-pore systems for divertor target application. Fusion Eng. Des. 49, 195–199 (2000)CrossRef Evtikhin, V.A., Lyublinski, I.E., Vertkov, A.V., Yezhov, N.I., Khripunov, B.I., Sotnikov, S.M., Mirnov, S.V., Petrov, V.B.: Energy removal and MHD performance of lithium capillary-pore systems for divertor target application. Fusion Eng. Des. 49, 195–199 (2000)CrossRef
14.
go back to reference Genin, L.G., Zhilin, V.G., Ivochkin, Y.P., Razuvanov, N.G., Belyaev, I.A., Listratov, Y.I., Sviridov, V.G.: Temperature fluctuations in a heated horizontal tube affected by transverse magnetic field. In: Proceedings of 8th PAMIR Conference on Fundamental and Applied MHD, pp. 37–41. Borgo, Corsica, France (2011) Genin, L.G., Zhilin, V.G., Ivochkin, Y.P., Razuvanov, N.G., Belyaev, I.A., Listratov, Y.I., Sviridov, V.G.: Temperature fluctuations in a heated horizontal tube affected by transverse magnetic field. In: Proceedings of 8th PAMIR Conference on Fundamental and Applied MHD, pp. 37–41. Borgo, Corsica, France (2011)
15.
go back to reference Gershuni, G.Z., Zhukhovitskii, E.M.: Convective Stability of Incompressible Fluids. Nauka, Moscow (1986) Gershuni, G.Z., Zhukhovitskii, E.M.: Convective Stability of Incompressible Fluids. Nauka, Moscow (1986)
16.
go back to reference Kelley, D.H., Sadoway, D.R.: Mixing in a liquid metal electrode. Phys. Fluids 26(5), 057,102 (2014)CrossRef Kelley, D.H., Sadoway, D.R.: Mixing in a liquid metal electrode. Phys. Fluids 26(5), 057,102 (2014)CrossRef
17.
go back to reference Kim, H., Boysen, D.A., Newhouse, J.M., Spatocco, B.L., Chung, B., Burke, P.J., Bradwell, D.J., Jiang, K., Tomaszowska, A.A., Wang, K., Wei, W., Ortiz, L.A., Barriga, S.A., Poizeau, S.M., Sadoway, D.R.: Liquid metal batteries: past, present, and future. Chem. Rev. 113(3), 2075–2099 (2013)CrossRef Kim, H., Boysen, D.A., Newhouse, J.M., Spatocco, B.L., Chung, B., Burke, P.J., Bradwell, D.J., Jiang, K., Tomaszowska, A.A., Wang, K., Wei, W., Ortiz, L.A., Barriga, S.A., Poizeau, S.M., Sadoway, D.R.: Liquid metal batteries: past, present, and future. Chem. Rev. 113(3), 2075–2099 (2013)CrossRef
18.
go back to reference Kirillov, I.R., Obukhov, D.M., Genin, L.G., Sviridov, V.G., Razuvanov, N.G., Batenin, V.M., Belyaev, I.A., Poddubnyi, I.I., Pyatnitskaya, N.Y.: Buoyancy effects in vertical rectangular duct with coplanar magnetic field and single sided heat load. Fusion Eng. Des. 104, 1–8 (2016)CrossRef Kirillov, I.R., Obukhov, D.M., Genin, L.G., Sviridov, V.G., Razuvanov, N.G., Batenin, V.M., Belyaev, I.A., Poddubnyi, I.I., Pyatnitskaya, N.Y.: Buoyancy effects in vertical rectangular duct with coplanar magnetic field and single sided heat load. Fusion Eng. Des. 104, 1–8 (2016)CrossRef
19.
go back to reference Krasnov, D., Zikanov, O., Boeck, T.: Comparative study of finite difference approaches to simulation of magnetohydrodynamic turbulence at low magnetic Reynolds number. Comp. Fluids 50, 46–59 (2011)MathSciNetCrossRef Krasnov, D., Zikanov, O., Boeck, T.: Comparative study of finite difference approaches to simulation of magnetohydrodynamic turbulence at low magnetic Reynolds number. Comp. Fluids 50, 46–59 (2011)MathSciNetCrossRef
20.
go back to reference Krasnov, D.S., Zikanov, O., Boeck, T.: Numerical study of magnetohydrodynamic duct flow at high Reynolds and Hartmann numbers. J. Fluid Mech. 704, 421–446 (2012)MathSciNetCrossRef Krasnov, D.S., Zikanov, O., Boeck, T.: Numerical study of magnetohydrodynamic duct flow at high Reynolds and Hartmann numbers. J. Fluid Mech. 704, 421–446 (2012)MathSciNetCrossRef
21.
go back to reference Liu, L., Zikanov, O.: Elevator mode convection in flows with strong magnetic fields. Phys. Fluids 27(4), 044,103 (2015)CrossRef Liu, L., Zikanov, O.: Elevator mode convection in flows with strong magnetic fields. Phys. Fluids 27(4), 044,103 (2015)CrossRef
22.
go back to reference Mas de les Valls, E., Sedano, L., Batet, L., Ricapito, I., Aiello, A., Gastaldi, O., Gabriel, F.: Lead-lithium eutectic material database for nuclear fusion technology. J. Nucl. Mater. 376(3), 353–357 (2008) Mas de les Valls, E., Sedano, L., Batet, L., Ricapito, I., Aiello, A., Gastaldi, O., Gabriel, F.: Lead-lithium eutectic material database for nuclear fusion technology. J. Nucl. Mater. 376(3), 353–357 (2008)
23.
go back to reference Mas de les Valls, E., Batet, L., de Medina, V., Sedano, L.A.: MHD thermofluid flow simulation of channels with a uniform thermal load as applied to HCLL breeding blankets for fusion technology. Magnetohydrodynamics (0024-998X) 48(1) (2012) Mas de les Valls, E., Batet, L., de Medina, V., Sedano, L.A.: MHD thermofluid flow simulation of channels with a uniform thermal load as applied to HCLL breeding blankets for fusion technology. Magnetohydrodynamics (0024-998X) 48(1) (2012)
24.
go back to reference Melnikov, I.A., Sviridov, E.V., Sviridov, V.G., Razuvanov, N.G.: Experimental investigation of MHD heat transfer in a vertical round tube affected by transverse magnetic field. Fusion Eng. Des. 112, 505–512 (2016)CrossRef Melnikov, I.A., Sviridov, E.V., Sviridov, V.G., Razuvanov, N.G.: Experimental investigation of MHD heat transfer in a vertical round tube affected by transverse magnetic field. Fusion Eng. Des. 112, 505–512 (2016)CrossRef
25.
go back to reference Moffatt, K.: On the suppression of turbulence by a uniform magnetic field. J. Fluid Mech. 23, 571–592 (1967)CrossRef Moffatt, K.: On the suppression of turbulence by a uniform magnetic field. J. Fluid Mech. 23, 571–592 (1967)CrossRef
26.
go back to reference Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comp. Phys. 143, 90–124 (1998)MathSciNetCrossRef Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comp. Phys. 143, 90–124 (1998)MathSciNetCrossRef
27.
go back to reference Müller, U., Bühler, L.: Magnetohydrodynamics in Channels and Containers. Springer, Berlin (2001)CrossRef Müller, U., Bühler, L.: Magnetohydrodynamics in Channels and Containers. Springer, Berlin (2001)CrossRef
28.
go back to reference Ni, M.J., Munipalli, R., Huang, P., Morley, N.B., Abdou, M.A.: A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: On a rectangular collocated grid system. J. Comp. Phys. 227, 174–204 (2007)MathSciNetCrossRef Ni, M.J., Munipalli, R., Huang, P., Morley, N.B., Abdou, M.A.: A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: On a rectangular collocated grid system. J. Comp. Phys. 227, 174–204 (2007)MathSciNetCrossRef
29.
30.
go back to reference Ruzic, D. N., Xu, W., Andruczyk, D., Jaworski, M. A.: Lithium-metal infused trenches (LiMIT) for heat removal in fusion devices. Nucl. Fusion 51(10), 102,002 (2011)CrossRef Ruzic, D. N., Xu, W., Andruczyk, D., Jaworski, M. A.: Lithium-metal infused trenches (LiMIT) for heat removal in fusion devices. Nucl. Fusion 51(10), 102,002 (2011)CrossRef
31.
go back to reference Schmidt, L.E., Calzavarini, E., Lohse, D., Toschi, F., Verzicco, R.: Axially homogeneous Rayleigh-Bénard convection in a cylindrical cell. J. Fluid Mech. 691, 52–68 (2012)MathSciNetCrossRef Schmidt, L.E., Calzavarini, E., Lohse, D., Toschi, F., Verzicco, R.: Axially homogeneous Rayleigh-Bénard convection in a cylindrical cell. J. Fluid Mech. 691, 52–68 (2012)MathSciNetCrossRef
32.
go back to reference Shen, Y., Zikanov, O.: Thermal convection in a liquid metal battery. Theor. Comp. Fluid Dyn. 30(4), 275–294 (2016)CrossRef Shen, Y., Zikanov, O.: Thermal convection in a liquid metal battery. Theor. Comp. Fluid Dyn. 30(4), 275–294 (2016)CrossRef
33.
go back to reference Sommeria, J., Moreau, R.: Why, how and when MHD-turbulence becomes two-dimensional. J. Fluid Mech. 118, 507–518 (1982)CrossRef Sommeria, J., Moreau, R.: Why, how and when MHD-turbulence becomes two-dimensional. J. Fluid Mech. 118, 507–518 (1982)CrossRef
34.
go back to reference Stefani, F., Gundrum, T., Gerbeth, G.: Contactless inductive flow tomography. Phys. Rev. E 70, 056,306 (2004) Stefani, F., Gundrum, T., Gerbeth, G.: Contactless inductive flow tomography. Phys. Rev. E 70, 056,306 (2004)
35.
go back to reference Thess, A., Zikanov, O.: Transition from two-dimensional to three-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 579, 383–412 (2007)MathSciNetCrossRef Thess, A., Zikanov, O.: Transition from two-dimensional to three-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 579, 383–412 (2007)MathSciNetCrossRef
36.
go back to reference Thess, A., Votyakov, E., Knaepen, B., Zikanov, O.: Theory of the lorentz force flowmeter. New J. Phys. 9(8), 299 (2007)CrossRef Thess, A., Votyakov, E., Knaepen, B., Zikanov, O.: Theory of the lorentz force flowmeter. New J. Phys. 9(8), 299 (2007)CrossRef
37.
go back to reference Vorobev, A., Zikanov, O., Davidson, P.A., Knaepen, B.: Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number. Phys. Fluids 17(12), 125,105 (2005)MathSciNetCrossRef Vorobev, A., Zikanov, O., Davidson, P.A., Knaepen, B.: Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number. Phys. Fluids 17(12), 125,105 (2005)MathSciNetCrossRef
38.
go back to reference Weiss, N.O., Proctor, M.R.E.: Magnetoconvection. Cambridge University Press, Cambridge (2014)CrossRef Weiss, N.O., Proctor, M.R.E.: Magnetoconvection. Cambridge University Press, Cambridge (2014)CrossRef
39.
go back to reference Zhang, X., Zikanov, O.: Mixed convection in a horizontal duct with bottom heating and strong transverse magnetic field. J. Fluid Mech. 757, 33–56 (2014)MathSciNetCrossRef Zhang, X., Zikanov, O.: Mixed convection in a horizontal duct with bottom heating and strong transverse magnetic field. J. Fluid Mech. 757, 33–56 (2014)MathSciNetCrossRef
40.
go back to reference Zhang, X., Zikanov, O.: Two-dimensional turbulent convection in a toroidal duct of a liquid metal blanket of a fusion reactor. J. Fluid Mech. 779, 36–52 (2015)MathSciNetCrossRef Zhang, X., Zikanov, O.: Two-dimensional turbulent convection in a toroidal duct of a liquid metal blanket of a fusion reactor. J. Fluid Mech. 779, 36–52 (2015)MathSciNetCrossRef
41.
go back to reference Zhang, X., Zikanov, O.: Thermal convection in a duct with strong axial magnetic field. Magnetohydrodynamics 53(1) (2017) Zhang, X., Zikanov, O.: Thermal convection in a duct with strong axial magnetic field. Magnetohydrodynamics 53(1) (2017)
42.
go back to reference Zhang, X., Zikanov, O.: Thermal convection in a toroidal duct of a liquid metal blanket. Part I. Effect of poloidal magnetic field. Fusion Eng. Des. 116, 52–60 (2017)CrossRef Zhang, X., Zikanov, O.: Thermal convection in a toroidal duct of a liquid metal blanket. Part I. Effect of poloidal magnetic field. Fusion Eng. Des. 116, 52–60 (2017)CrossRef
43.
go back to reference Zhang, X., Zikanov, O.: Thermal convection in a toroidal duct of a liquid metal blanket. Part II. Effect of axial mean flow. Fusion Eng. Des. 116, 40–46 (2017)CrossRef Zhang, X., Zikanov, O.: Thermal convection in a toroidal duct of a liquid metal blanket. Part II. Effect of axial mean flow. Fusion Eng. Des. 116, 40–46 (2017)CrossRef
44.
go back to reference Zhao, Y., Tao, J., Zikanov, O.: Transition to two-dimensionality in magnetohydrodynamic turbulent Taylor-Couette flow. Phys. Rev. E 89, 033,002 (2014) Zhao, Y., Tao, J., Zikanov, O.: Transition to two-dimensionality in magnetohydrodynamic turbulent Taylor-Couette flow. Phys. Rev. E 89, 033,002 (2014)
45.
go back to reference Zikanov, O., Listratov, Y.: Numerical investigation of MHD heat transfer in a vertical round tube affected by transverse magnetic field. Fusion Eng. Des. 113, 151–161 (2016)CrossRef Zikanov, O., Listratov, Y.: Numerical investigation of MHD heat transfer in a vertical round tube affected by transverse magnetic field. Fusion Eng. Des. 113, 151–161 (2016)CrossRef
46.
go back to reference Zikanov, O., Thess, A.: Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number. J. Fluid Mech. 358, 299–333 (1998)CrossRef Zikanov, O., Thess, A.: Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number. J. Fluid Mech. 358, 299–333 (1998)CrossRef
47.
go back to reference Zikanov, O., Thess, A.: Direct numerical simulation as a tool for understanding MHD liquid metal turbulence. Appl. Math. Mod. 28(1), 1–13 (2004)CrossRef Zikanov, O., Thess, A.: Direct numerical simulation as a tool for understanding MHD liquid metal turbulence. Appl. Math. Mod. 28(1), 1–13 (2004)CrossRef
48.
go back to reference Zikanov, O., Listratov, Y., Sviridov, V.G.: Natural convection in horizontal pipe flow with strong transverse magnetic field. J. Fluid Mech. 720, 486–516 (2013)MathSciNetCrossRef Zikanov, O., Listratov, Y., Sviridov, V.G.: Natural convection in horizontal pipe flow with strong transverse magnetic field. J. Fluid Mech. 720, 486–516 (2013)MathSciNetCrossRef
Metadata
Title
Instabilities in Extreme Magnetoconvection
Authors
Oleg Zikanov
Yaroslav Listratov
Xuan Zhang
Valentin Sviridov
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-91494-7_11

Premium Partners