Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

Instrument Playing Technique Recognition: A Greek Music Use Case

Authors: Kostis Paraskevoudis, Theodoros Giannakopoulos

Published in: Proceedings of the Worldwide Music Conference 2021

Publisher: Springer International Publishing

share
SHARE

Abstract

Instrument playing technique recognition is a growing research field of Music Information Retrieval (MIR). Regarding stringed instruments, an instrument playing technique can be defined as any particular motive of the instrument players’ fingers applied on either the strings of the neck or of the body of the instrument. In this work, we examine the automated recognition of instrument playing techniques in solo recordings of the Greek stringed instrument bouzouki. To this end, a dataset comprising 500 audio segments belonging to 5 different playing techniques is generated. Hand-crafted audio features are extracted from each audio segment on a short-term basis, and then segment-level feature statistics are calculated as the final feature representation of each audio segment. Extensive experimentation for different types of classifiers and feature extraction optimization has been carried out to select the best model. Finally, the models are evaluated using an independent testing dataset, comprising 5 popular songs (whole recordings, not segments). To evaluate using these uninterrupted audio recordings, the non-existence of a playing technique (i.e. the “standard” way of playing a musical part, which has not been included in the initial classification task of the 5 playing techniques) is handled through a class-specific probabilistic thresholding of each class. An important contribution of this paper is that both the proposed classification pipeline and the dataset are openly provided for experimentation.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literature
1.
go back to reference Lostanlen, V., Andén, J., Lagrange, M.: Extended playing techniques: the next milestone in musical instrument recognition. In: Proceedings of the 5th International Conference on Digital Libraries for Musicology, p. 10 (2018) Lostanlen, V., Andén, J., Lagrange, M.: Extended playing techniques: the next milestone in musical instrument recognition. In: Proceedings of the 5th International Conference on Digital Libraries for Musicology, p. 10 (2018)
2.
go back to reference Chen, Y.P., Su, L., Yang, Y.H.: Electric guitar playing technique detection in real-world recording based on F0 sequence pattern recognition. In: International Society for Music Information Retrieval, pp. 708–714 (2015) Chen, Y.P., Su, L., Yang, Y.H.: Electric guitar playing technique detection in real-world recording based on F0 sequence pattern recognition. In: International Society for Music Information Retrieval, pp. 708–714 (2015)
3.
go back to reference Chen, S.H., Wu, S.H., Lee, Y.S., Lo, R., Wang, J.C.: Hierarchical representation based on Bayesian nonparametric tree-structured mixture model for playing technique classification. In: Proceedings of the on Thematic Workshops of ACM Multimedia 2017, pp. 537–543 (2017) Chen, S.H., Wu, S.H., Lee, Y.S., Lo, R., Wang, J.C.: Hierarchical representation based on Bayesian nonparametric tree-structured mixture model for playing technique classification. In: Proceedings of the on Thematic Workshops of ACM Multimedia 2017, pp. 537–543 (2017)
4.
go back to reference Reboursière, L., Lähdeoja, O., Drugman, T., Dupont, S., Picard-Limpens, C., Riche, N.: Left and right-hand guitar playing techniques detection. In: International Conference on New Interfaces for Musical Expression (2012) Reboursière, L., Lähdeoja, O., Drugman, T., Dupont, S., Picard-Limpens, C., Riche, N.: Left and right-hand guitar playing techniques detection. In: International Conference on New Interfaces for Musical Expression (2012)
5.
go back to reference Su, L., Lin, H.M., Yang, Y.H.: Sparse modeling of magnitude and phase-derived spectra for playing technique classification. IEEE/ACM Trans. Audio Speech Lang. Process. 22(12), 2122–2132 (2014) CrossRef Su, L., Lin, H.M., Yang, Y.H.: Sparse modeling of magnitude and phase-derived spectra for playing technique classification. IEEE/ACM Trans. Audio Speech Lang. Process. 22(12), 2122–2132 (2014) CrossRef
6.
go back to reference Abeßer, J., Lukashevich, H., Schuller, G.: Feature-based extraction of plucking and expression styles of the electric bass guitar. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2290–2293 (2010) Abeßer, J., Lukashevich, H., Schuller, G.: Feature-based extraction of plucking and expression styles of the electric bass guitar. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2290–2293 (2010)
7.
go back to reference Abeßer, J., Schuller, G.: Instrument-centered music transcription of solo bass guitar recordings. IEEE/ACM Trans. Audio Speech Lang. Process. 25(9), 1741–1750 (2017) CrossRef Abeßer, J., Schuller, G.: Instrument-centered music transcription of solo bass guitar recordings. IEEE/ACM Trans. Audio Speech Lang. Process. 25(9), 1741–1750 (2017) CrossRef
8.
go back to reference Young, D.: Classification of common violin bowing techniques using gesture data from a playable measurement system. In: International Conference on New Interfaces for Musical Expression, pp. 44–48 (2008) Young, D.: Classification of common violin bowing techniques using gesture data from a playable measurement system. In: International Conference on New Interfaces for Musical Expression, pp. 44–48 (2008)
9.
go back to reference Barbancho, I., de la Bandera, C., Barbancho, A. M., Tardon, L. J.: Transcription and expressiveness detection system for violin music. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 189–192 (2009) Barbancho, I., de la Bandera, C., Barbancho, A. M., Tardon, L. J.: Transcription and expressiveness detection system for violin music. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 189–192 (2009)
10.
go back to reference Liang, B., Fazekas, G., McPherson, A., Sandler, M.: Piano pedaller: a measurement system for classification and visualisation of piano pedalling techniques. In: International Conference on New Interfaces for Musical Expression (2017) Liang, B., Fazekas, G., McPherson, A., Sandler, M.: Piano pedaller: a measurement system for classification and visualisation of piano pedalling techniques. In: International Conference on New Interfaces for Musical Expression (2017)
11.
go back to reference Herrera, P., Yeterian, A., Gouyon, F.: Automatic classification of drum sounds: a comparison of feature selection methods and classification techniques. In: International Conference on Music and Artificial Intelligence, pp. 69–80. Springer, Heidelberg. (2002) Herrera, P., Yeterian, A., Gouyon, F.: Automatic classification of drum sounds: a comparison of feature selection methods and classification techniques. In: International Conference on Music and Artificial Intelligence, pp. 69–80. Springer, Heidelberg. (2002)
12.
go back to reference Prockup, M., Schmidt, E.M., Scott, J.J., Kim, Y.E.: Toward understanding expressive percussion through content-based analysis. In: International Society for Music Information Retrieval, pp. 143–148 (2013) Prockup, M., Schmidt, E.M., Scott, J.J., Kim, Y.E.: Toward understanding expressive percussion through content-based analysis. In: International Society for Music Information Retrieval, pp. 143–148 (2013)
13.
go back to reference Wang, C., Benetos, E., Meng, X., Chew, E.: HMM–based glissando detection for recordings of Chinese bamboo flute. In: Sound and Music Computing Conference. 14 Konstantinos Paraskevoudis and Theodoros Giannakopoulos (2019) Wang, C., Benetos, E., Meng, X., Chew, E.: HMM–based glissando detection for recordings of Chinese bamboo flute. In: Sound and Music Computing Conference. 14 Konstantinos Paraskevoudis and Theodoros Giannakopoulos (2019)
14.
go back to reference Giannakopoulos, T., Aggelos, P.: Introduction to Audio Analysis: A MATLAB® Approach. Academic Press, Cambridge (2014) Giannakopoulos, T., Aggelos, P.: Introduction to Audio Analysis: A MATLAB® Approach. Academic Press, Cambridge (2014)
15.
go back to reference Giannakopoulos, T.: pyaudioanalysis: an open–source python library for audio signal analysis. PLoS One 10(12), e0144610 (2015) CrossRef Giannakopoulos, T.: pyaudioanalysis: an open–source python library for audio signal analysis. PLoS One 10(12), e0144610 (2015) CrossRef
16.
go back to reference Theodoridis, S., Pikrakis, A., Koutroumbas, K., Cavouras, D.: Introduction to Pattern Recognition: A MATLAB® Approach. Academic Press, Cambridge (2010) Theodoridis, S., Pikrakis, A., Koutroumbas, K., Cavouras, D.: Introduction to Pattern Recognition: A MATLAB® Approach. Academic Press, Cambridge (2010)
17.
go back to reference Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2012) Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2012)
18.
go back to reference Theodoridis, S.: Machine Learning: A Bayesian and Optimization Perspective. Academic Press, Cambridge (2015) Theodoridis, S.: Machine Learning: A Bayesian and Optimization Perspective. Academic Press, Cambridge (2015)
20.
go back to reference Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Kern, R.: Array programming with NumPy. Nature 585(7825), 357–362 (2020) CrossRef Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Kern, R.: Array programming with NumPy. Nature 585(7825), 357–362 (2020) CrossRef
Metadata
Title
Instrument Playing Technique Recognition: A Greek Music Use Case
Authors
Kostis Paraskevoudis
Theodoros Giannakopoulos
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-74039-9_13