Skip to main content
Top
Published in: Wireless Personal Communications 1/2021

23-01-2021

Integrated Energy and Trust-Based Semi-Markov Prediction for Lifetime Maximization in Wireless Sensor Networks

Authors: S. Famila, A. Jawahar, S Leones Sherwin Vimalraj, J. Lydia

Published in: Wireless Personal Communications | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Many of today’s computing and communication models are distributed systems that are composed of autonomous computational entities that communicate with each other, usually by passing messages. Distributed systems encompass a variety of applications and wireless sensor networks (WSN) is an important application of it. The tiny, multiple functionality and low power sensor nodes are considered to be interconnected in the WSN for efficient process of aggregating and transmitting the data to the base station. The clustering-based schemes of sensor networks are capable of organizing the network through the utilization of a specifically designated node termed as the cluster head for the objective of energy conservation and data aggregation. Further, the cluster head is responsible for conveying potential information collected by the cluster member nodes and aggregate them before transmitting it to the base station. In this paper, a Reliable Cluster Head Selection Technique using Integrated Energy and Trust-based Semi-Markov Prediction (RCHST-IETSMP) is proposed with the view to extend the lifetime of sensor networks. This proposed RCHST-IETSMP incorporated two significant parameters associated with energy and trust for effective selection of cluster head facilitated through the merits of Semi-Markoc prediction integrated with the Hyper Erlang distribution process. The simulation results of the proposed RCHST-IETSMP scheme is proving to be efficient in upholding the residual energy of the network and the throughput to a maximum level of 23% and 19% predominant to the trust and energy-based clustering schemes considered for investigation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhu, R., Ma, M., Zhang, Y., & Hu, J. (2015). Collaborative wireless sensor networks and applications. International Journal of Distributed Sensor Networks, 11(8), 352761.CrossRef Zhu, R., Ma, M., Zhang, Y., & Hu, J. (2015). Collaborative wireless sensor networks and applications. International Journal of Distributed Sensor Networks, 11(8), 352761.CrossRef
2.
go back to reference Jia, Y., Zhang, C., & Liang, K. (2017). A distributed multi-competitive clustering approach for wireless sensor networks. International Journal of Wireless Information Networks, 24(4), 454–461.CrossRef Jia, Y., Zhang, C., & Liang, K. (2017). A distributed multi-competitive clustering approach for wireless sensor networks. International Journal of Wireless Information Networks, 24(4), 454–461.CrossRef
3.
go back to reference Tuna, G. (2017). Clustering-based energy-efficient routing approach for underwater wireless sensor networks. International Journal of Sensor Networks, 1(1), 1.MathSciNetCrossRef Tuna, G. (2017). Clustering-based energy-efficient routing approach for underwater wireless sensor networks. International Journal of Sensor Networks, 1(1), 1.MathSciNetCrossRef
4.
go back to reference Pandey, S. (2017). Energy efficient clustering techniques for wireless sensor networks-a review. International Journal of Scientific Research and Management, 1(1), 43–56. Pandey, S. (2017). Energy efficient clustering techniques for wireless sensor networks-a review. International Journal of Scientific Research and Management, 1(1), 43–56.
5.
go back to reference Liu, X. (2012). Sensor deployment of wireless sensor networks based on ant colony optimization with three classes of ant transitions. IEEE Communications Letters, 16(10), 1604–1607.CrossRef Liu, X. (2012). Sensor deployment of wireless sensor networks based on ant colony optimization with three classes of ant transitions. IEEE Communications Letters, 16(10), 1604–1607.CrossRef
6.
go back to reference Chaturvedi, A., Goswami, D., & Singh, S. (2016). Energy efficient cluster head selection for cross layer design over wireless sensor network. International Journal of Communication Networks and Distributed Systems, 16(4), 335.CrossRef Chaturvedi, A., Goswami, D., & Singh, S. (2016). Energy efficient cluster head selection for cross layer design over wireless sensor network. International Journal of Communication Networks and Distributed Systems, 16(4), 335.CrossRef
7.
go back to reference Deosarkar, B. P., Yadav, N. S., & Yadav, R. P. (2010). Distributed clustering with restricted number of cluster heads for energy efficient data gathering in wireless sensor networks. International Journal of Engineering and Technology, 2(1), 7–16.CrossRef Deosarkar, B. P., Yadav, N. S., & Yadav, R. P. (2010). Distributed clustering with restricted number of cluster heads for energy efficient data gathering in wireless sensor networks. International Journal of Engineering and Technology, 2(1), 7–16.CrossRef
8.
go back to reference Huang, J. (2017). Research on balanced energy consumption of wireless sensor network nodes based on clustering algorithm. In 2017 International Conference on Computer Network, Electronic and Automation (ICCNEA), 1(1), 23–34. Huang, J. (2017). Research on balanced energy consumption of wireless sensor network nodes based on clustering algorithm. In 2017 International Conference on Computer Network, Electronic and Automation (ICCNEA)1(1), 23–34.
9.
go back to reference Kheireddine, M., & Abdellatif, R. (2014). Analysis of hops length in wireless sensor networks. Wireless Sensor Network, 06(06), 109–117.CrossRef Kheireddine, M., & Abdellatif, R. (2014). Analysis of hops length in wireless sensor networks. Wireless Sensor Network, 06(06), 109–117.CrossRef
10.
go back to reference Mbowe, E. J., & Oreku, S. G. (2014). Quality of service in wireless sensor networks. Wireless Sensor Network, 06(02), 19–26.CrossRef Mbowe, E. J., & Oreku, S. G. (2014). Quality of service in wireless sensor networks. Wireless Sensor Network, 06(02), 19–26.CrossRef
11.
go back to reference Bhuyan, B., Sarma, H. K., Sarma, N., Kar, A., & Mall, R. (2010). Quality of service (QoS) provisions in wireless sensor networks and related challenges. Wireless Sensor Network, 02(11), 861–868.CrossRef Bhuyan, B., Sarma, H. K., Sarma, N., Kar, A., & Mall, R. (2010). Quality of service (QoS) provisions in wireless sensor networks and related challenges. Wireless Sensor Network, 02(11), 861–868.CrossRef
12.
go back to reference Deva Sarma, H. K., Mall, R., & Kar, A. (2016). E2R2: Energy-efficient and reliable routing for mobile wireless sensor networks. IEEE Systems Journal, 10(2), 604–616.CrossRef Deva Sarma, H. K., Mall, R., & Kar, A. (2016). E2R2: Energy-efficient and reliable routing for mobile wireless sensor networks. IEEE Systems Journal, 10(2), 604–616.CrossRef
13.
go back to reference Vinu, S. (2019). Optimised denoising scheme via opposition-based self-adaptive learning PSO algorithm for wavelet-based ECG signal noise reduction. International Journal of Biomedical Engineering and Technology, 31(4), 325.CrossRef Vinu, S. (2019). Optimised denoising scheme via opposition-based self-adaptive learning PSO algorithm for wavelet-based ECG signal noise reduction. International Journal of Biomedical Engineering and Technology, 31(4), 325.CrossRef
14.
go back to reference Vinu, S., Selvi M., & Kumar, R. S. (2018). An optimal cluster formation based energy efficient dynamic scheduling hybrid MAC protocol for heavy traffic load in wireless sensor networks. Computers & Security, 77, 277–288.CrossRef Vinu, S., Selvi M., & Kumar, R. S. (2018). An optimal cluster formation based energy efficient dynamic scheduling hybrid MAC protocol for heavy traffic load in wireless sensor networks. Computers & Security, 77, 277–288.CrossRef
15.
go back to reference Vinu, S. (2019). Optimal task assignment in mobile cloud computing by queue based ant-bee algorithm. Wireless Personal Communications, 104(1), 173–197.CrossRef Vinu, S. (2019). Optimal task assignment in mobile cloud computing by queue based ant-bee algorithm. Wireless Personal Communications, 104(1), 173–197.CrossRef
16.
go back to reference Selvi, M., Thangaramya, K., Ganapathy, S., Kulothungan, K., Nehemiah, H. K., & Kannan, A. (2019). An energy aware trust based secure routing algorithm for effective communication in wireless sensor networks. Wireless Personal Communications, 105(4), 1475–1490.CrossRef Selvi, M., Thangaramya, K., Ganapathy, S., Kulothungan, K., Nehemiah, H. K., & Kannan, A. (2019). An energy aware trust based secure routing algorithm for effective communication in wireless sensor networks. Wireless Personal Communications105(4), 1475–1490.CrossRef
17.
go back to reference Sarma, H. K., Kar, A., & Mall, R. (2016). A hierarchical and role based secure routing protocol for mobile wireless sensor networks. Wireless Personal Communications, 90(3), 1067–1103.CrossRef Sarma, H. K., Kar, A., & Mall, R. (2016). A hierarchical and role based secure routing protocol for mobile wireless sensor networks. Wireless Personal Communications, 90(3), 1067–1103.CrossRef
18.
go back to reference Thippeswamy, B. M., Reshma, S., Tejaswi, V., Shaila, K., Venugopal, K. R., & Patnaik, L. M. (2015). STEAR: Secure trust-aware energy-efficient adaptive routing in wireless sensor networks. Journal of Advances in Computer Networks, 3(2), 146–149.CrossRef Thippeswamy, B. M., Reshma, S., Tejaswi, V., Shaila, K., Venugopal, K. R., & Patnaik, L. M. (2015). STEAR: Secure trust-aware energy-efficient adaptive routing in wireless sensor networks. Journal of Advances in Computer Networks, 3(2), 146–149.CrossRef
19.
go back to reference Rehman, E., Sher, M., Naqvi, S. H., Badar Khan, K., & Ullah, K. (2017). Energy efficient secure trust based clustering algorithm for mobile wireless sensor network. Journal of Computer Networks and Communications, 2017(1), 1–8.CrossRef Rehman, E., Sher, M., Naqvi, S. H., Badar Khan, K., & Ullah, K. (2017). Energy efficient secure trust based clustering algorithm for mobile wireless sensor network. Journal of Computer Networks and Communications, 2017(1), 1–8.CrossRef
20.
go back to reference Kumar, N., Singh, Y., & Singh, P. K. (2017). An energy efficient trust aware opportunistic routing protocol for wireless sensor network. International Journal of Information System Modeling and Design, 8(2), 30–44.CrossRef Kumar, N., Singh, Y., & Singh, P. K. (2017). An energy efficient trust aware opportunistic routing protocol for wireless sensor network. International Journal of Information System Modeling and Design, 8(2), 30–44.CrossRef
21.
go back to reference Miglani, A., Bhatia, T., Sharma, G., & Shrivastava, G. (2017). An energy efficient and trust aware framework for secure routing in LEACH for wireless sensor networks. Scalable Computing: Practice and Experience, 18(3), 67–76. Miglani, A., Bhatia, T., Sharma, G., & Shrivastava, G. (2017). An energy efficient and trust aware framework for secure routing in LEACH for wireless sensor networks. Scalable Computing: Practice and Experience, 18(3), 67–76.
22.
go back to reference Bozorgi, S. M., & Bidgoli, A. M. (2018). HEEC: A hybrid unequal energy efficient clustering for wireless sensor networks. Wireless Networks, 1(2), 56–69. Bozorgi, S. M., & Bidgoli, A. M. (2018). HEEC: A hybrid unequal energy efficient clustering for wireless sensor networks. Wireless Networks, 1(2), 56–69.
23.
go back to reference Udhayavani, M., & Chandrasekaran, M. (2018). Design of TAREEN (trust aware routing with energy efficient network) and enactment of TARF: A trust-aware routing framework for wireless sensor networks. Cluster Computing, 1(1), 45–59. Udhayavani, M., & Chandrasekaran, M. (2018). Design of TAREEN (trust aware routing with energy efficient network) and enactment of TARF: A trust-aware routing framework for wireless sensor networks. Cluster Computing, 1(1), 45–59.
Metadata
Title
Integrated Energy and Trust-Based Semi-Markov Prediction for Lifetime Maximization in Wireless Sensor Networks
Authors
S. Famila
A. Jawahar
S Leones Sherwin Vimalraj
J. Lydia
Publication date
23-01-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-08028-0

Other articles of this Issue 1/2021

Wireless Personal Communications 1/2021 Go to the issue