Skip to main content
Top
Published in: Journal of Materials Science 13/2024

19-03-2024 | Computation & theory

Integrated microstructural simulations and mechanical property predictions for age-precipitated Al–Mg–Si alloys

Authors: Xiaoyu Zheng, Meiling He, Qi Huang, Hong Mao, Yuling Liu, Yi Kong, Yong Du

Published in: Journal of Materials Science | Issue 13/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Having a full understanding of the precipitate and its mechanical response in aged Al–Mg–Si alloys is challenging. This work builds a comprehensive analysis framework that integrates artificial aging precipitation simulations and mechanical property predictions. By inputting information such as alloy composition, aging temperature, aging time and some material parameters, the statistical distribution of precipitates and the solid solution phase in the matrix can be obtained from Kampmann and Wagner numerical (KWN) method. Then from the results of age precipitation simulations, the key constitutive parameters for the alloy-specific strength and strain hardening behavior were calculated. Additionally, the single crystal properties of pure Al were taken into account to simulate the uniaxial tensile behavior of the different alloys with the crystal plasticity finite element method. The simulated stress–strain curves of three Al–Mg–Si alloys with different Mg and Si contents agree well with the experimental measurements. In addition, the anisotropy and stress–strain distribution characteristics of the alloys are also well captured in the present simulations. Different from previous studies, this study is based on the main role of precipitate in enhancing the mechanical properties of aluminum alloys, and the decisive constitutive parameters of crystal plasticity are obtained through microstructure simulation based on KWN method, which is not only limited to Al–Mg–Si alloys, but also applicable to other aging precipitation alloys.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nie JF, Muddle BC, Polmear IJ (1996) The effect of precipitate shape and orientation on dispersion strengthening in high strength aluminium alloys. Mater Sci Forum 217–222:1257–1262CrossRef Nie JF, Muddle BC, Polmear IJ (1996) The effect of precipitate shape and orientation on dispersion strengthening in high strength aluminium alloys. Mater Sci Forum 217–222:1257–1262CrossRef
2.
go back to reference Russell KG, Ashby MF (1970) Slip in aluminum crystals containing strong, plate-like particles. Acta Metall 18(8):891–901CrossRef Russell KG, Ashby MF (1970) Slip in aluminum crystals containing strong, plate-like particles. Acta Metall 18(8):891–901CrossRef
3.
go back to reference Miao WF, Laughlin DE (1999) Precipitation hardening in aluminum alloy 6022. Scr Mater 40(7):873–878CrossRef Miao WF, Laughlin DE (1999) Precipitation hardening in aluminum alloy 6022. Scr Mater 40(7):873–878CrossRef
4.
go back to reference Bahrami A, Miroux A, Sietsma J (2012) An age-hardening model for Al–Mg–Si alloys considering needle-shaped precipitates. Metall Mater Trans A 43(11):4445–4453CrossRef Bahrami A, Miroux A, Sietsma J (2012) An age-hardening model for Al–Mg–Si alloys considering needle-shaped precipitates. Metall Mater Trans A 43(11):4445–4453CrossRef
5.
go back to reference Myhr OR, Grong Ø, Pedersen KO (2010) A combined precipitation, yield strength, and work hardening model for Al–Mg–Si alloys. Metall Mater Trans A 41(9):2276–2289CrossRef Myhr OR, Grong Ø, Pedersen KO (2010) A combined precipitation, yield strength, and work hardening model for Al–Mg–Si alloys. Metall Mater Trans A 41(9):2276–2289CrossRef
6.
go back to reference Bardel D et al (2015) Cyclic behaviour of a 6061 aluminium alloy: coupling precipitation and elastoplastic modelling. Acta Mater 83:256–268CrossRef Bardel D et al (2015) Cyclic behaviour of a 6061 aluminium alloy: coupling precipitation and elastoplastic modelling. Acta Mater 83:256–268CrossRef
7.
go back to reference Myhr OR, Grong O (2000) Modelling of non-isothermal transformations in alloys containing a particle distribution. Acta Mater 48(7):1605–1615CrossRef Myhr OR, Grong O (2000) Modelling of non-isothermal transformations in alloys containing a particle distribution. Acta Mater 48(7):1605–1615CrossRef
8.
go back to reference Myhr O (2001) Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta Mater 49(1):65–75CrossRef Myhr O (2001) Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta Mater 49(1):65–75CrossRef
9.
go back to reference Du Q, Poole WJ, Wells MA (2012) A mathematical model coupled to CALPHAD to predict precipitation kinetics for multicomponent aluminum alloys. Acta Mater 60(9):3830–3839CrossRef Du Q, Poole WJ, Wells MA (2012) A mathematical model coupled to CALPHAD to predict precipitation kinetics for multicomponent aluminum alloys. Acta Mater 60(9):3830–3839CrossRef
10.
go back to reference Holmedal B, Osmundsen E, Du Q (2015) Precipitation of non-spherical particles in aluminum alloys part I: generalization of the Kampmann–Wagner numerical model. Metall Mater Trans A 47(1):581–588CrossRef Holmedal B, Osmundsen E, Du Q (2015) Precipitation of non-spherical particles in aluminum alloys part I: generalization of the Kampmann–Wagner numerical model. Metall Mater Trans A 47(1):581–588CrossRef
13.
go back to reference Roters F et al (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58(4):1152–1211CrossRef Roters F et al (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58(4):1152–1211CrossRef
15.
go back to reference Elam CF, Taylor G (1925) The plastic extension and fracture of aluminium crystals. Proc R Soc Lond Ser A Contain Pap Math Phys Character 108(745):28–51 Elam CF, Taylor G (1925) The plastic extension and fracture of aluminium crystals. Proc R Soc Lond Ser A Contain Pap Math Phys Character 108(745):28–51
16.
go back to reference Elam CF, Taylor G (1923) Bakerian lecture: the distortion of an aluminium crystal during a tensile test. Proc R Soc Lond Ser A Contain Pap Math Phys Character 102(719):643–667 Elam CF, Taylor G (1923) Bakerian lecture: the distortion of an aluminium crystal during a tensile test. Proc R Soc Lond Ser A Contain Pap Math Phys Character 102(719):643–667
17.
go back to reference Dillamore IL (1969) Plasticity of crystals with special reference to metals. Phys Bull 20(3):107–107CrossRef Dillamore IL (1969) Plasticity of crystals with special reference to metals. Phys Bull 20(3):107–107CrossRef
18.
go back to reference Taylor GI (1938) Plastic strain in metals. J Inst Met 62:307–324 Taylor GI (1938) Plastic strain in metals. J Inst Met 62:307–324
19.
go back to reference Hill R, Rice JR (1972) Constitutive analysis of elastic–plastic crystals at arbitrary strain. J Mech Phys Solids 20(6):401–413CrossRef Hill R, Rice JR (1972) Constitutive analysis of elastic–plastic crystals at arbitrary strain. J Mech Phys Solids 20(6):401–413CrossRef
20.
go back to reference Asaro RJ, Rice JR (1977) Strain localization in ductile single crystals. J Mech Phys Solids 25(5):309–338CrossRef Asaro RJ, Rice JR (1977) Strain localization in ductile single crystals. J Mech Phys Solids 25(5):309–338CrossRef
21.
go back to reference Dørum C et al (2010) Finite element analysis of plastic failure in heat-affected zone of welded aluminium connections. Comput Struct 88(9–10):519–528CrossRef Dørum C et al (2010) Finite element analysis of plastic failure in heat-affected zone of welded aluminium connections. Comput Struct 88(9–10):519–528CrossRef
24.
go back to reference Bardel D et al (2014) Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy. Acta Mater 62:129–140CrossRef Bardel D et al (2014) Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy. Acta Mater 62:129–140CrossRef
25.
go back to reference Du Q et al (2016) Precipitation of non-spherical particles in aluminum alloys part II: numerical simulation and experimental characterization during aging treatment of an Al–Mg–Si alloy. Metall Mater Trans A Phys Metall Mater Sci 47A(1):589–599CrossRef Du Q et al (2016) Precipitation of non-spherical particles in aluminum alloys part II: numerical simulation and experimental characterization during aging treatment of an Al–Mg–Si alloy. Metall Mater Trans A Phys Metall Mater Sci 47A(1):589–599CrossRef
27.
go back to reference Holmedal B (2015) Strength contributions from precipitates. Philos Mag Lett 95(12):594–601CrossRef Holmedal B (2015) Strength contributions from precipitates. Philos Mag Lett 95(12):594–601CrossRef
28.
go back to reference Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48(3):171–273CrossRef Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48(3):171–273CrossRef
29.
go back to reference Kocks UF (1966) A statistical theory of flow stress and work-hardening. Philos Mag 13(123):541–566CrossRef Kocks UF (1966) A statistical theory of flow stress and work-hardening. Philos Mag 13(123):541–566CrossRef
30.
go back to reference Myhr OR, Hopperstad OS, Børvik T (2018) A combined precipitation, yield stress, and work hardening model for Al–Mg–Si alloys incorporating the effects of strain rate and temperature. Metall Mater Trans A 49(8):3592–3609CrossRef Myhr OR, Hopperstad OS, Børvik T (2018) A combined precipitation, yield stress, and work hardening model for Al–Mg–Si alloys incorporating the effects of strain rate and temperature. Metall Mater Trans A 49(8):3592–3609CrossRef
31.
go back to reference Ashby MF (1970) The deformation of plastically non-homogeneous materials. Philos Mag A J Theor Exp Appl Phys 21(170):399–424 Ashby MF (1970) The deformation of plastically non-homogeneous materials. Philos Mag A J Theor Exp Appl Phys 21(170):399–424
32.
go back to reference Proudhon H et al (2008) The role of internal stresses on the plastic deformation of the Al–Mg–Si–Cu alloy AA6111. Philos Mag 88(5):621–640CrossRef Proudhon H et al (2008) The role of internal stresses on the plastic deformation of the Al–Mg–Si–Cu alloy AA6111. Philos Mag 88(5):621–640CrossRef
33.
go back to reference Peirce D, Asaro RJ, Needleman A (1982) An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall 30(6):1087–1119CrossRef Peirce D, Asaro RJ, Needleman A (1982) An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall 30(6):1087–1119CrossRef
34.
go back to reference Peirce D, Asaro RJ, Needleman A (1983) Material rate dependence and localized deformation in crystalline solids. Acta Metall 31(12):1951–1976CrossRef Peirce D, Asaro RJ, Needleman A (1983) Material rate dependence and localized deformation in crystalline solids. Acta Metall 31(12):1951–1976CrossRef
35.
go back to reference Bassani JL, Wu TY (1997) Latent hardening in single crystals. II. Analytical characterization and predictions. Proc R Soc Lond Ser A Math Phys Sci 435(1893):21–41 Bassani JL, Wu TY (1997) Latent hardening in single crystals. II. Analytical characterization and predictions. Proc R Soc Lond Ser A Math Phys Sci 435(1893):21–41
36.
go back to reference Myhr OR et al (2004) Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing. Acta Mater 52(17):4997–5008CrossRef Myhr OR et al (2004) Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing. Acta Mater 52(17):4997–5008CrossRef
37.
go back to reference Chen R et al (2017) Modeling the precipitation kinetics and tensile properties in Al–7Si–Mg cast aluminum alloys. Mater Sci Eng A 685:403–416CrossRef Chen R et al (2017) Modeling the precipitation kinetics and tensile properties in Al–7Si–Mg cast aluminum alloys. Mater Sci Eng A 685:403–416CrossRef
39.
go back to reference Myhr OR, Grong Ø, Schäfer C (2015) An extended age-hardening model for Al–Mg–Si alloys incorporating the room-temperature storage and cold deformation process stages. Metall Mater Trans A 46(12):6018–6039CrossRef Myhr OR, Grong Ø, Schäfer C (2015) An extended age-hardening model for Al–Mg–Si alloys incorporating the room-temperature storage and cold deformation process stages. Metall Mater Trans A 46(12):6018–6039CrossRef
40.
go back to reference Hornbogen E, Starke EA (1993) Overview no. 102 Theory assisted design of high strength low alloy aluminum. Acta Metallurgica et Materialia 41(1):1–16CrossRef Hornbogen E, Starke EA (1993) Overview no. 102 Theory assisted design of high strength low alloy aluminum. Acta Metallurgica et Materialia 41(1):1–16CrossRef
43.
go back to reference Roters F et al (2004) Comparison of single crystal simple shear deformation experiments with crystal plasticity finite element simulations. Adv Eng Mater 6(8):653–656CrossRef Roters F et al (2004) Comparison of single crystal simple shear deformation experiments with crystal plasticity finite element simulations. Adv Eng Mater 6(8):653–656CrossRef
Metadata
Title
Integrated microstructural simulations and mechanical property predictions for age-precipitated Al–Mg–Si alloys
Authors
Xiaoyu Zheng
Meiling He
Qi Huang
Hong Mao
Yuling Liu
Yi Kong
Yong Du
Publication date
19-03-2024
Publisher
Springer US
Published in
Journal of Materials Science / Issue 13/2024
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-024-09549-w

Other articles of this Issue 13/2024

Journal of Materials Science 13/2024 Go to the issue

Premium Partners