Skip to main content
Top

2015 | OriginalPaper | Chapter

2. Integrated Simulation of Interactive Surface-Water and Groundwater Systems

Authors : Varut Guvanasen, PhD,PE, Peter S. Huyakorn, PhD

Published in: Advances in Water Resources Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Effective management of watersheds and ecosystems requires a comprehensive knowledge of hydrologic processes, and the ability to predict and quantify reliably the impacts due to anthropogenic or natural changes in water availability and water quality. For integrated water resources management studies in which both surface water and groundwater are interactive, a technically rigorous and physically based approach is essential. Simulation models have been used increasingly to provide a predictive capability in support of water resources, and environmental and restoration projects. Often, simplified models are used to quantify complex hydrologic and transport processes in surface and subsurface domains. Such models incorporate restrictive assumptions relating to spatial variability, dimensionality, and interactions of components in flow and transport processes. During the past decade, with the advent of high-speed personal computers, a number of rigorous integrated surface-water/groundwater models have been developed to circumvent these limitations. In general, a typical model of an integrated hydrologic system may be divided into three interactive and interconnected domains: subsurface, overland, and channels/streams, in which water flow and transport of constituents can occur. In this chapter, the following are presented and discussed: a description of relevant processes relating to water flow and solute transport in conjunction with governing equations for all domains; procedures for model development and calibration; and two field application examples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rosegrant, M. W., & Cai, X. (2002). Global water demand and supply projections part 2: Results and prospects to 2025. Water International, 27(2), 170–182.CrossRef Rosegrant, M. W., & Cai, X. (2002). Global water demand and supply projections part 2: Results and prospects to 2025. Water International, 27(2), 170–182.CrossRef
2.
go back to reference Loucks, D. P. (1996). Surface water resource systems. In L. W. Mays (Ed.), Water resources handbook (pp. 15.3-15.44). New York: McGraw-Hill. Loucks, D. P. (1996). Surface water resource systems. In L. W. Mays (Ed.), Water resources handbook (pp. 15.3-15.44). New York: McGraw-Hill.
3.
go back to reference Freeze, R. A., & Harlan, R. L. (1969). Blueprint of a physically-based, digitally simulated hydrologic response model. Journal of Hydrology, 9, 237–258.CrossRef Freeze, R. A., & Harlan, R. L. (1969). Blueprint of a physically-based, digitally simulated hydrologic response model. Journal of Hydrology, 9, 237–258.CrossRef
4.
go back to reference Spanoudaki, K., Nanou, A., Stamou, A. I., Christodoulou, G., Sparks, T., Bockelmann, B., & Falconer, R. A. (2005). Integrated surface water-groundwater modelling. Global NEST Journal, 7(3), 281–295. Spanoudaki, K., Nanou, A., Stamou, A. I., Christodoulou, G., Sparks, T., Bockelmann, B., & Falconer, R. A. (2005). Integrated surface water-groundwater modelling. Global NEST Journal, 7(3), 281–295.
5.
go back to reference Freeze, R. A. (1972). Role of subsurface flow in generating surface runoff: 1. Base flow contribution to channel flow. Water Resources Research, 8(3), 609–623.CrossRef Freeze, R. A. (1972). Role of subsurface flow in generating surface runoff: 1. Base flow contribution to channel flow. Water Resources Research, 8(3), 609–623.CrossRef
6.
go back to reference Langevin, C., Swain, E., & Melinda, W. (2005). Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary. Journal of Hydrology, 314, 212–234.CrossRef Langevin, C., Swain, E., & Melinda, W. (2005). Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary. Journal of Hydrology, 314, 212–234.CrossRef
7.
go back to reference Swain, E. D., & Wexler, E. J. (1996). A coupled surface-water and ground-water flow model (Modbranch) for simulation of stream-aquifer interaction. Techniques of Water-Resources Investigations of the United States Geological Survey Book 6, Chapter A6. Swain, E. D., & Wexler, E. J. (1996). A coupled surface-water and ground-water flow model (Modbranch) for simulation of stream-aquifer interaction. Techniques of Water-Resources Investigations of the United States Geological Survey Book 6, Chapter A6.
8.
go back to reference Bradford, S. F., & Katopodes, N. D. (1998). Nonhydrostatic model for surface irrigation. Journal of Irrigation and Drainage Engineering, 124(4), 200–212.CrossRef Bradford, S. F., & Katopodes, N. D. (1998). Nonhydrostatic model for surface irrigation. Journal of Irrigation and Drainage Engineering, 124(4), 200–212.CrossRef
9.
go back to reference VanderKwaak, J. E. (1999). Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems. PhD thesis, University of Waterloo, Waterloo, Ontario, Canada. VanderKwaak, J. E. (1999). Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems. PhD thesis, University of Waterloo, Waterloo, Ontario, Canada.
10.
go back to reference Panday, S., & Huyakorn, P. S. (2004). A fully coupled physically-based spatially distributed model for evaluating surface/subsurface flow. Advances in Water Resources, 27, 361–382.CrossRef Panday, S., & Huyakorn, P. S. (2004). A fully coupled physically-based spatially distributed model for evaluating surface/subsurface flow. Advances in Water Resources, 27, 361–382.CrossRef
11.
go back to reference Kumar, M., Duffy, C. J., & Salvage, K. M. (2009). A second order accurate, finite volume based, integrated hydrologic modeling (FIHM) framework for simulation of surface and subsurface flow. Vadose Zone Journal. doi:10.2136/vzj2009.0014. Kumar, M., Duffy, C. J., & Salvage, K. M. (2009). A second order accurate, finite volume based, integrated hydrologic modeling (FIHM) framework for simulation of surface and subsurface flow. Vadose Zone Journal. doi:10.2136/vzj2009.0014.
12.
go back to reference Khambhammettu, P., Kool, J., Tsou, M.-S., Huyakorn, P. S., Guvanasen, V., & Beach, M. (2009). Modeling the integrated surface-water groundwater interactions in West-Central Florida, USA. The International Symposium on Efficient Groundwater Resources Management. The Challenge of Quality and Quantity for Sustainable Future, Bangkok, Thailand, February 16-21, 2009. Khambhammettu, P., Kool, J., Tsou, M.-S., Huyakorn, P. S., Guvanasen, V., & Beach, M. (2009). Modeling the integrated surface-water groundwater interactions in West-Central Florida, USA. The International Symposium on Efficient Groundwater Resources Management. The Challenge of Quality and Quantity for Sustainable Future, Bangkok, Thailand, February 16-21, 2009.
13.
go back to reference Barr, A., & Barron, O. (2009). Application of a coupled surface water-groundwater model to evaluate environmental conditions in the Southern River catchment. Commonwealth Scientific and Industrial Research Organisation: Water for a Healthy Country National Research Flagship, Australia. Barr, A., & Barron, O. (2009). Application of a coupled surface water-groundwater model to evaluate environmental conditions in the Southern River catchment. Commonwealth Scientific and Industrial Research Organisation: Water for a Healthy Country National Research Flagship, Australia.
14.
go back to reference Guvanasen, V., Wei, X. Y., Huang, D., Shinde, D., & Price, R. (2011). Application of MODHMS to simulate integrated water flow and phosphorous transport in a highly interactive surface water groundwater system along the eastern boundary of the Everglades National Park, Florida. MODFLOW and More 2011: Integrated Hydrologic Modeling Conference. The Colorado School of Mines, Golden, Colorado, USA. June 5-8, 2011. Guvanasen, V., Wei, X. Y., Huang, D., Shinde, D., & Price, R. (2011). Application of MODHMS to simulate integrated water flow and phosphorous transport in a highly interactive surface water groundwater system along the eastern boundary of the Everglades National Park, Florida. MODFLOW and More 2011: Integrated Hydrologic Modeling Conference. The Colorado School of Mines, Golden, Colorado, USA. June 5-8, 2011.
15.
go back to reference Huang, G., & Yeh, G.-T. (2012). Integrated modeling of groundwater and surface water interactions in a manmade wetland. Terrestrial, Atmospheric and Oceanic Sciences, 23(5), 501–511.CrossRef Huang, G., & Yeh, G.-T. (2012). Integrated modeling of groundwater and surface water interactions in a manmade wetland. Terrestrial, Atmospheric and Oceanic Sciences, 23(5), 501–511.CrossRef
16.
go back to reference Panday, S., & Huyakorn, P. S. (2008). MODFLOW SURFACT: A state-of-the-art use of vadose zone flow and transport equation and numerical techniques for environmental evaluations. Vadose Zone Journal, 7(2), 610–631.CrossRef Panday, S., & Huyakorn, P. S. (2008). MODFLOW SURFACT: A state-of-the-art use of vadose zone flow and transport equation and numerical techniques for environmental evaluations. Vadose Zone Journal, 7(2), 610–631.CrossRef
17.
go back to reference Zhang, Q., & Werner, A. D. (2012). Integrated surface-subsurface modeling of Fuxianhu Lake catchment, Southwest China. Water Resources Management, 23(11), 2189–2204.CrossRef Zhang, Q., & Werner, A. D. (2012). Integrated surface-subsurface modeling of Fuxianhu Lake catchment, Southwest China. Water Resources Management, 23(11), 2189–2204.CrossRef
18.
go back to reference Bear, J. (1972). Dynamics of fluids in porous media (p. 764). New York: Elsevier. Bear, J. (1972). Dynamics of fluids in porous media (p. 764). New York: Elsevier.
19.
go back to reference Bear, J. (1979). Hydraulics of groundwater (p. 569). New York: McGraw-Hill. Bear, J. (1979). Hydraulics of groundwater (p. 569). New York: McGraw-Hill.
20.
go back to reference Eagleson, P. S. (1969). Dynamic hydrology (p. 462). New York: McGraw-Hill. Eagleson, P. S. (1969). Dynamic hydrology (p. 462). New York: McGraw-Hill.
21.
go back to reference Viessman, W., & Lewis, G. (1996). Introduction to hydrology (p. 760). New York: HarperCollins. Viessman, W., & Lewis, G. (1996). Introduction to hydrology (p. 760). New York: HarperCollins.
22.
go back to reference Guvanasen, V., & Chan, T. (2000). A three-dimensional numerical model for thermohydromechanical deformation with hysteresis in fractured rock mass. International Journal of Rock Mechanics and Mining Sciences, 37, 89–106.CrossRef Guvanasen, V., & Chan, T. (2000). A three-dimensional numerical model for thermohydromechanical deformation with hysteresis in fractured rock mass. International Journal of Rock Mechanics and Mining Sciences, 37, 89–106.CrossRef
23.
go back to reference van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.CrossRef van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.CrossRef
24.
go back to reference Guymon, G. L. (1994). Unsaturated zone hydrology (p. 210). New Jersey: Prentice Hall. Guymon, G. L. (1994). Unsaturated zone hydrology (p. 210). New Jersey: Prentice Hall.
25.
go back to reference Wu, Y. S., Huyakorn, P. S., & Park, N. S. (1994). A vertical equilibrium model for assessing nonaqueous phase liquid contamination and remediation of groundwater systems. Water Resources Research, 30, 903–912.CrossRef Wu, Y. S., Huyakorn, P. S., & Park, N. S. (1994). A vertical equilibrium model for assessing nonaqueous phase liquid contamination and remediation of groundwater systems. Water Resources Research, 30, 903–912.CrossRef
26.
go back to reference Huyakorn, P. S., Panday, S., & Wu, Y. S. (1994). A three-dimensional multiphase flow model for assessing NAPL contamination in porous and fractured media: 1. Formulation. Journal of Contaminant Hydrology, 16, 109–130.CrossRef Huyakorn, P. S., Panday, S., & Wu, Y. S. (1994). A three-dimensional multiphase flow model for assessing NAPL contamination in porous and fractured media: 1. Formulation. Journal of Contaminant Hydrology, 16, 109–130.CrossRef
27.
go back to reference Gottardi, G., & Venutelli, M. (1993). A control-volume finite-element model for two-dimensional overland flow. Advances in Water Resources, 16, 277–284.CrossRef Gottardi, G., & Venutelli, M. (1993). A control-volume finite-element model for two-dimensional overland flow. Advances in Water Resources, 16, 277–284.CrossRef
28.
go back to reference Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology (p. 572). New York: McGraw-Hill. Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology (p. 572). New York: McGraw-Hill.
29.
go back to reference Chow, V. T. (1959). Open-channel hydraulics (p. 680). New York: McGraw-Hill. Chow, V. T. (1959). Open-channel hydraulics (p. 680). New York: McGraw-Hill.
30.
go back to reference Scheidegger, A. E. (1961). General theory of dispersion in porous media. Journal of Geophysical Research, 66, 3273–3278.CrossRef Scheidegger, A. E. (1961). General theory of dispersion in porous media. Journal of Geophysical Research, 66, 3273–3278.CrossRef
31.
go back to reference Roberson, J. A., & Crowe, C. T. (1985). Engineering fluid mechanics (3rd edn., p. 503). Boston: Houghton Mifflin. Roberson, J. A., & Crowe, C. T. (1985). Engineering fluid mechanics (3rd edn., p. 503). Boston: Houghton Mifflin.
32.
go back to reference HydroGeoLogic, Inc. (2012). MODHMS-A MODFLOW-based hydrologic modeling system. Documentation and user’s guide. Reston, Virginia: HydroGeoLogic, Inc. HydroGeoLogic, Inc. (2012). MODHMS-A MODFLOW-based hydrologic modeling system. Documentation and user’s guide. Reston, Virginia: HydroGeoLogic, Inc.
33.
go back to reference Kristensen, K. J., & Jensen, S. E. (1975). A model for estimating actual evapotranspiration from potential evapotranspiration. Nordic Hydrology, 6, 170–188. Kristensen, K. J., & Jensen, S. E. (1975). A model for estimating actual evapotranspiration from potential evapotranspiration. Nordic Hydrology, 6, 170–188.
34.
go back to reference Wigmosta, M. S., Vail, L. W., & Lettenmaier, D. P. (1994). A distributed hydrology-vegetation model for complex terrain. Water Resources Research, 30(6), 1665–1679.CrossRef Wigmosta, M. S., Vail, L. W., & Lettenmaier, D. P. (1994). A distributed hydrology-vegetation model for complex terrain. Water Resources Research, 30(6), 1665–1679.CrossRef
35.
go back to reference Monteith, J. L. (1981). Evaporation and surface temperature. Quarterly Journal of the Royal Meteorological Society, 107, 1–27.CrossRef Monteith, J. L. (1981). Evaporation and surface temperature. Quarterly Journal of the Royal Meteorological Society, 107, 1–27.CrossRef
36.
go back to reference Senarath, S. U. S., Ogden, F. L., Downer, C. W., & Sharif, H. O. (2000). On the calibration and verification of two-dimensional, distributed, hortonian, continuous watershed models. Water Resources Research, 36(6), 1495–1510.CrossRef Senarath, S. U. S., Ogden, F. L., Downer, C. W., & Sharif, H. O. (2000). On the calibration and verification of two-dimensional, distributed, hortonian, continuous watershed models. Water Resources Research, 36(6), 1495–1510.CrossRef
37.
go back to reference Feddes, R. A., Kowalik, P. J., & Zaradny, H. (1978). Simulation of field water use and crop yield. New York: Wiley. Feddes, R. A., Kowalik, P. J., & Zaradny, H. (1978). Simulation of field water use and crop yield. New York: Wiley.
38.
go back to reference Woolhiser, D. A., Smith, R. E., & Giraldez, J.-V. (1997). Effects of spatial variability of saturated hydraulic conductivity on hortonian overland flow. Water Resources Research, 32(3), 671–678.CrossRef Woolhiser, D. A., Smith, R. E., & Giraldez, J.-V. (1997). Effects of spatial variability of saturated hydraulic conductivity on hortonian overland flow. Water Resources Research, 32(3), 671–678.CrossRef
39.
go back to reference McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground water flow model. United States Geological Survey Open File Report 83-875. Washington, DC. McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground water flow model. United States Geological Survey Open File Report 83-875. Washington, DC.
40.
go back to reference Graham, N., & Refsgaard, A. (2001). MIKE SHE: A distributed, physically based modeling system for surface water/groundwater interactions. In Proceedings of “MODLFOW 2001 and other modeling Odysseys,” Golden, Colorado, USA. pp. 321–327. Graham, N., & Refsgaard, A. (2001). MIKE SHE: A distributed, physically based modeling system for surface water/groundwater interactions. In Proceedings of “MODLFOW 2001 and other modeling Odysseys,” Golden, Colorado, USA. pp. 321–327.
41.
go back to reference Panday, P., Brown, N., Foreman, T., Bedekar, V., Kaur, J., & Huyakorn, P.S. (2009). Simulating dynamic water supply systems in a fully integrated surface-subsurface flow and transport model. Vadose Zone Journal. doi:10.2136/vzj2009.0020. Panday, P., Brown, N., Foreman, T., Bedekar, V., Kaur, J., & Huyakorn, P.S. (2009). Simulating dynamic water supply systems in a fully integrated surface-subsurface flow and transport model. Vadose Zone Journal. doi:10.2136/vzj2009.0020.
42.
go back to reference Celia, M. A., Bouloutas, E. T., & Zarba, R. L. (1990). A general mass-conservative numerical solution for the unsaturated flow equation. Water Resource Research, 27(7), 1483–1496.CrossRef Celia, M. A., Bouloutas, E. T., & Zarba, R. L. (1990). A general mass-conservative numerical solution for the unsaturated flow equation. Water Resource Research, 27(7), 1483–1496.CrossRef
43.
go back to reference Huyakorn, P. S., & Pinder, G. F. (1983). Computational methods in subsurface flow (p. 473). London: Academic. Huyakorn, P. S., & Pinder, G. F. (1983). Computational methods in subsurface flow (p. 473). London: Academic.
44.
go back to reference Huyakorn, P. S., Springer, E. P., Guvanasen, V., & Wadsworth, T. D. (1986). A three dimensional finite element model for simulating water flow in variably saturated porous media. Water Resources Research, 22(12), 1790–1808.CrossRef Huyakorn, P. S., Springer, E. P., Guvanasen, V., & Wadsworth, T. D. (1986). A three dimensional finite element model for simulating water flow in variably saturated porous media. Water Resources Research, 22(12), 1790–1808.CrossRef
45.
go back to reference Vinsome, P. K. W. (1976). Orthomin, an iterative method for solving sparse sets of simultaneous linear equations. In Proceedings of Society of Petroleum Engineers Symposium on Numerical Simulation of Reservoir Performance, Los Angeles, California, USA. Vinsome, P. K. W. (1976). Orthomin, an iterative method for solving sparse sets of simultaneous linear equations. In Proceedings of Society of Petroleum Engineers Symposium on Numerical Simulation of Reservoir Performance, Los Angeles, California, USA.
46.
go back to reference van der Vorst, H. A. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 13, 631–644.CrossRef van der Vorst, H. A. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 13, 631–644.CrossRef
47.
go back to reference Forsyth, P. A. (1993). MATB user’s guide iterative sparse matrix solver for block matrices. Canada: Department of Computer Science University of Waterloo. Forsyth, P. A. (1993). MATB user’s guide iterative sparse matrix solver for block matrices. Canada: Department of Computer Science University of Waterloo.
48.
go back to reference Yeh, G. T., & Huang, G. (2003). A numerical model to simulate water flow in watershed systems of 1-D stream-river network, 2-D overland regime, and 3-D subsurface media (WASH123D: Version 1.5). Orlando, Florida: Department of Civil and Environmental Engineering, University of Central Florida. Yeh, G. T., & Huang, G. (2003). A numerical model to simulate water flow in watershed systems of 1-D stream-river network, 2-D overland regime, and 3-D subsurface media (WASH123D: Version 1.5). Orlando, Florida: Department of Civil and Environmental Engineering, University of Central Florida.
49.
go back to reference Yeh, G. T., Huang, G., Cheng, H. P., Zhang, F., Lin, H. C., Edris, E., & Richards, D. (2006). A first principle, physics-based watershed model: WASH123D. In: V. P. Singh & D. K. Frevert (Eds.), Watershed models. Boca Raton: CRC. Yeh, G. T., Huang, G., Cheng, H. P., Zhang, F., Lin, H. C., Edris, E., & Richards, D. (2006). A first principle, physics-based watershed model: WASH123D. In: V. P. Singh & D. K. Frevert (Eds.), Watershed models. Boca Raton: CRC.
50.
go back to reference Therrien, R., McLaren, R. G., & Sudicky, E. A. (2007). Hydrogeosphere-a three-dimensional numerical model describing fully integrated subsurface and surface flow and solute transport. Canada: Groundwater Simulations Group, University of Waterloo. Therrien, R., McLaren, R. G., & Sudicky, E. A. (2007). Hydrogeosphere-a three-dimensional numerical model describing fully integrated subsurface and surface flow and solute transport. Canada: Groundwater Simulations Group, University of Waterloo.
51.
go back to reference Kollet, S. J., & Maxwell, R. M. (2006). Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Advances in Water Resources, 29, 945–958.CrossRef Kollet, S. J., & Maxwell, R. M. (2006). Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Advances in Water Resources, 29, 945–958.CrossRef
52.
go back to reference Anderson, M. P., & Woessner, W. W. (1992). Applied groundwater modeling (p. 381). San Diego: Academic. Anderson, M. P., & Woessner, W. W. (1992). Applied groundwater modeling (p. 381). San Diego: Academic.
53.
go back to reference Poeter, E. P., & Hill, M. C. (1998). Documentation of UCODE: A computer code for universal inverse modeling. United States Geological Survey Water Resources Investigations Report 98-4080, Washington, DC. Poeter, E. P., & Hill, M. C. (1998). Documentation of UCODE: A computer code for universal inverse modeling. United States Geological Survey Water Resources Investigations Report 98-4080, Washington, DC.
54.
go back to reference Doherty, J. (2000). PEST, model-independent parameter estimation. Australia: Watermark Numerical Computing. Doherty, J. (2000). PEST, model-independent parameter estimation. Australia: Watermark Numerical Computing.
55.
go back to reference Duan, Q., Gupta, V. K., & Sorooshian, S. (1992). Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28, 1015–1031.CrossRef Duan, Q., Gupta, V. K., & Sorooshian, S. (1992). Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28, 1015–1031.CrossRef
56.
go back to reference Vrugt, J. A., Gupta, H. V., Bouten, W., & Sorooshian, S. (2003). A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrological model parameters. Water Resources Research, 39, 1201–1218. Vrugt, J. A., Gupta, H. V., Bouten, W., & Sorooshian, S. (2003). A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrological model parameters. Water Resources Research, 39, 1201–1218.
57.
go back to reference Schoups, G., Lee Addams, C., & Gorelick, S. M. (2005). Multi-objective calibration of a surface water-groundwater flow model in an irrigated agricultural region: Yaqui Valley, Sonora, Mexico. Hydrology and Earth System Sciences, 9, 549–568.CrossRef Schoups, G., Lee Addams, C., & Gorelick, S. M. (2005). Multi-objective calibration of a surface water-groundwater flow model in an irrigated agricultural region: Yaqui Valley, Sonora, Mexico. Hydrology and Earth System Sciences, 9, 549–568.CrossRef
58.
go back to reference Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., & Sorooshian, S. (2003). Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 39, 1214–1232. Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., & Sorooshian, S. (2003). Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 39, 1214–1232.
59.
go back to reference Duan, Q., Gupta, H. V., Sorooshian, S., Rousseau, A. N., & Turcotte, R. (Eds.). (2003). Calibration of watershed models. Water science and application 6 (p. 345). Washington, DC: American Geophysical Union. Duan, Q., Gupta, H. V., Sorooshian, S., Rousseau, A. N., & Turcotte, R. (Eds.). (2003). Calibration of watershed models. Water science and application 6 (p. 345). Washington, DC: American Geophysical Union.
60.
go back to reference Vrugt, J. A., Nuallain, B. O., Robinson, B. A., Bouten, W., Dekker, S. C., & Sloot, P. M. A. (2006). Application of parallel computing to stochastic parameter estimation in environmental models. Computers & Geosciences, 32, 1139–1155.CrossRef Vrugt, J. A., Nuallain, B. O., Robinson, B. A., Bouten, W., Dekker, S. C., & Sloot, P. M. A. (2006). Application of parallel computing to stochastic parameter estimation in environmental models. Computers & Geosciences, 32, 1139–1155.CrossRef
61.
go back to reference Schreuder, W. A. (2009). Running BeoPEST. In Proceedings of the 1st PEST conference, Potomac, Maryland, USA, November 1-3, 2009. Schreuder, W. A. (2009). Running BeoPEST. In Proceedings of the 1st PEST conference, Potomac, Maryland, USA, November 1-3, 2009.
62.
go back to reference Hunt, R. J., Luchette, J., Schreuder, W. A., Rumbaugh, J. O., Doherty, J., Tonkin, M. J., & Rumbaugh, D. B. (2010). Using a cloud to replenish parched groundwater modeling efforts. Ground Water, 48(3), 360–365.CrossRef Hunt, R. J., Luchette, J., Schreuder, W. A., Rumbaugh, J. O., Doherty, J., Tonkin, M. J., & Rumbaugh, D. B. (2010). Using a cloud to replenish parched groundwater modeling efforts. Ground Water, 48(3), 360–365.CrossRef
63.
go back to reference Hill, M. C., & Tiedeman, C. R. (2007). Effective groundwater model calibration (p. 455). New Jersey: Wiley.CrossRef Hill, M. C., & Tiedeman, C. R. (2007). Effective groundwater model calibration (p. 455). New Jersey: Wiley.CrossRef
64.
go back to reference Nash, J. E., & Sutcliffe. J. V. (1970). River flow forecasting through conceptual models part I-a discussion of principles. Journal of Hydrology, 10(3), 282–290.CrossRef Nash, J. E., & Sutcliffe. J. V. (1970). River flow forecasting through conceptual models part I-a discussion of principles. Journal of Hydrology, 10(3), 282–290.CrossRef
65.
go back to reference Smith, M. B., Laurine, D. B., Koren, V. I., Reed, S. M., & Zhang, Z. (2003). Hydrologic model calibration strategy accounting for model structure. In: Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau, & R. Turcotte (Eds.), Calibration of watershed models, Water science and application 6 (p. 133–152). Washington, DC: American Geophysical Union.CrossRef Smith, M. B., Laurine, D. B., Koren, V. I., Reed, S. M., & Zhang, Z. (2003). Hydrologic model calibration strategy accounting for model structure. In: Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau, & R. Turcotte (Eds.), Calibration of watershed models, Water science and application 6 (p. 133–152). Washington, DC: American Geophysical Union.CrossRef
66.
go back to reference Beach, M. H. (2006). Southern district ground-water flow model, version 2.0. Hydrologic Evaluation Section, Resource Conservation and Development Department, Southwest Florida Water Management District, Brooksville, Florida. Beach, M. H. (2006). Southern district ground-water flow model, version 2.0. Hydrologic Evaluation Section, Resource Conservation and Development Department, Southwest Florida Water Management District, Brooksville, Florida.
67.
go back to reference Environmental Simulations, Inc. (2004). Development of the district wide regulation model. Report submitted to the Southwest Florida water Management District, Brooksville, Florida. Environmental Simulations, Inc. (2004). Development of the district wide regulation model. Report submitted to the Southwest Florida water Management District, Brooksville, Florida.
68.
go back to reference HydroGeoLogic, Inc. (2011). Peace river integrated modeling project (PRIM) phase IV: Basin-wide model. Report submitted to the Southwest Florida Water Management District, Brooksville, Florida. HydroGeoLogic, Inc. (2011). Peace river integrated modeling project (PRIM) phase IV: Basin-wide model. Report submitted to the Southwest Florida Water Management District, Brooksville, Florida.
69.
go back to reference HydroGeoLogic, Inc. (2009). Peace river integrated modeling project (PRIM) phase III: Saddle creek basin integrated model. Report submitted to the Southwest Florida Water Management District, Brooksville, Florida. HydroGeoLogic, Inc. (2009). Peace river integrated modeling project (PRIM) phase III: Saddle creek basin integrated model. Report submitted to the Southwest Florida Water Management District, Brooksville, Florida.
70.
go back to reference HydroGeoLogic, Inc. (2012). Peace river integrated modeling project (PRIM) phase V: Predictive model simulations. Report submitted to The Southwest Florida Water Management District. HydroGeoLogic, Inc. (2012). Peace river integrated modeling project (PRIM) phase V: Predictive model simulations. Report submitted to The Southwest Florida Water Management District.
71.
go back to reference U.S. Army Corps of Engineers (USACE). (2002). Central and Southern Florida Project, Canal-111 South Dade County, Florida-S-332D detention area pre-operations and start-up monitoring data review report. U.S. Army Corps of Engineers, Jacksonville District, Jacksonville, Florida. U.S. Army Corps of Engineers (USACE). (2002). Central and Southern Florida Project, Canal-111 South Dade County, Florida-S-332D detention area pre-operations and start-up monitoring data review report. U.S. Army Corps of Engineers, Jacksonville District, Jacksonville, Florida.
72.
go back to reference Cunningham, K. J., Sukop, M. C., Huang, H., Alvarez, P. F., Curran, H. A., Renken, R. A., & Dixon, J. F. (2009). Prominence of ichnologically influenced macroporosity in the karst system of biscayne aquifer: Stratiform “Super-K” zones. Geological Society of America Bulletin, 121(1/2), 164–180. Cunningham, K. J., Sukop, M. C., Huang, H., Alvarez, P. F., Curran, H. A., Renken, R. A., & Dixon, J. F. (2009). Prominence of ichnologically influenced macroporosity in the karst system of biscayne aquifer: Stratiform “Super-K” zones. Geological Society of America Bulletin, 121(1/2), 164–180.
73.
go back to reference Evans, R. A. (2000). Calibration and verification of the MODBRANCH numerical model of South Dade County, Florida. U. S. Army Corps of Engineers, Jacksonville District, February, 2000. Evans, R. A. (2000). Calibration and verification of the MODBRANCH numerical model of South Dade County, Florida. U. S. Army Corps of Engineers, Jacksonville District, February, 2000.
74.
go back to reference Fish, J. E., & Stewart, M. (1991). Hydrogeology of the surficial aquifer system, Dade County, Florida. U.S. Geological Survey Water-Resources Investigations Report 90-4108, 56 pp. Fish, J. E., & Stewart, M. (1991). Hydrogeology of the surficial aquifer system, Dade County, Florida. U.S. Geological Survey Water-Resources Investigations Report 90-4108, 56 pp.
75.
go back to reference Swain, E. D., Wolfert, M. A., Bales, J. D., & Goodwin, C. R. (2004). Two-dimensional hydrodynamic simulation of surface-water flow and transport to Florida Bay through the Southern Inland and Coastal Systems (SICS). U.S. Geological Survey Water-Resources Investigations Report 03-4287. 56 pp. Swain, E. D., Wolfert, M. A., Bales, J. D., & Goodwin, C. R. (2004). Two-dimensional hydrodynamic simulation of surface-water flow and transport to Florida Bay through the Southern Inland and Coastal Systems (SICS). U.S. Geological Survey Water-Resources Investigations Report 03-4287. 56 pp.
76.
go back to reference HydroGeoLogic, Inc. (2010) Surface water groundwater flow and transport model development for the eastern boundary of Everglades National Park. Report submitted to The Florida International University, Miami, Florida, and National Park Services, Homestead, Florida. HydroGeoLogic, Inc. (2010) Surface water groundwater flow and transport model development for the eastern boundary of Everglades National Park. Report submitted to The Florida International University, Miami, Florida, and National Park Services, Homestead, Florida.
77.
go back to reference South Florida Water Management District. (1997). Documentation for the South Florida water management model. Hydrologic Systems Modeling Division, Planning Department, South Florida Water Management District, West Palm Beach, Florida. South Florida Water Management District. (1997). Documentation for the South Florida water management model. Hydrologic Systems Modeling Division, Planning Department, South Florida Water Management District, West Palm Beach, Florida.
78.
go back to reference Geiser, E., Price, R., Scinto, L., & Trexler, J. (2008). Phosphorus retention and subsurface movement through the S-332 detention basins on the eastern boundary of the Everglades National Park. Florida International University, Report submitted to National Park Services, Homestead, Florida. Geiser, E., Price, R., Scinto, L., & Trexler, J. (2008). Phosphorus retention and subsurface movement through the S-332 detention basins on the eastern boundary of the Everglades National Park. Florida International University, Report submitted to National Park Services, Homestead, Florida.
79.
go back to reference Pollman, C. D., Landing, W. M., Perry, J. J., & Fitzpatrick, T. (2002). Wet deposition of phosphorus in Florida. Atmospheric Environment, 36, 2309–2318.CrossRef Pollman, C. D., Landing, W. M., Perry, J. J., & Fitzpatrick, T. (2002). Wet deposition of phosphorus in Florida. Atmospheric Environment, 36, 2309–2318.CrossRef
80.
go back to reference HydroGeoLogic, Inc. (2006). Conceptual and numerical model development using MODHMS for marsh driven operations at S −332 detention basins, prepared for: South Florida Ecosystem Office Everglades National Park. Report submitted to The Florida International University, Miami, Florida, and National Park Services, Homestead, Florida. HydroGeoLogic, Inc. (2006). Conceptual and numerical model development using MODHMS for marsh driven operations at S −332 detention basins, prepared for: South Florida Ecosystem Office Everglades National Park. Report submitted to The Florida International University, Miami, Florida, and National Park Services, Homestead, Florida.
Metadata
Title
Integrated Simulation of Interactive Surface-Water and Groundwater Systems
Authors
Varut Guvanasen, PhD,PE
Peter S. Huyakorn, PhD
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-11023-3_2