Skip to main content
Top
Published in:
Cover of the book

2015 | OriginalPaper | Chapter

Integrating Microarray Data and GRNs

Authors : L. Koumakis, G. Potamias, M. Tsiknakis, M. Zervakis, V. Moustakis

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the completion of the Human Genome Project and the emergence of high-throughput technologies, a vast amount of molecular and biological data are being produced. Two of the most important and significant data sources come from microarray gene-expression experiments and respective databanks (e,g., Gene Expression Omnibus—GEO (http://​www.​ncbi.​nlm.​nih.​gov/​geo)), and from molecular pathways and Gene Regulatory Networks (GRNs) stored and curated in public (e.g., Kyoto Encyclopedia of Genes and Genomes—KEGG (http://​www.​genome.​jp/​kegg/​pathway.​html), Reactome (http://​www.​reactome.​org/​ReactomeGWT/​entrypoint.​html)) as well as in commercial repositories (e.g., Ingenuity IPA (http://​www.​ingenuity.​com/​products/​ipa)). The association of these two sources aims to give new insight in disease understanding and reveal new molecular targets in the treatment of specific phenotypes.
Three major research lines and respective efforts that try to utilize and combine data from both of these sources could be identified, namely: (1) de novo reconstruction of GRNs, (2) identification of Gene-signatures, and (3) identification of differentially expressed GRN functional paths (i.e., sub-GRN paths that distinguish between different phenotypes). In this chapter, we give an overview of the existing methods that support the different types of gene-expression and GRN integration with a focus on methodologies that aim to identify phenotype-discriminant GRNs or subnetworks, and we also present our methodology.
Literature
1.
go back to reference Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33–37CrossRefPubMed Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33–37CrossRefPubMed
2.
go back to reference Huang Y, Zhao Z, Xu H, Shyr Y, Zhang B (2012) Advances in systems biology: computational algorithms and applications. BMC Syst Biol 6(3) Huang Y, Zhao Z, Xu H, Shyr Y, Zhang B (2012) Advances in systems biology: computational algorithms and applications. BMC Syst Biol 6(3)
3.
go back to reference Hung J-H, Yang T-H, Zhenjun H, Weng Z, DeLisi C (2012) Gene set enrichment analysis: performance evaluation and usage guidelines. Brief Bioinform 13(3):281–291CrossRefPubMedPubMedCentral Hung J-H, Yang T-H, Zhenjun H, Weng Z, DeLisi C (2012) Gene set enrichment analysis: performance evaluation and usage guidelines. Brief Bioinform 13(3):281–291CrossRefPubMedPubMedCentral
4.
go back to reference Heckera M, Lambecka S, Toepferb S, van Somerenc E, Guthke R (2009) Gene regulatory network inference: data integration in dynamic models—a review. Biosystems 96(1):86–103CrossRef Heckera M, Lambecka S, Toepferb S, van Somerenc E, Guthke R (2009) Gene regulatory network inference: data integration in dynamic models—a review. Biosystems 96(1):86–103CrossRef
5.
go back to reference Ein-Dor L, Kela I, Getz G, Givol D, Domany E (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21(2):171–178CrossRefPubMed Ein-Dor L, Kela I, Getz G, Givol D, Domany E (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21(2):171–178CrossRefPubMed
7.
go back to reference Shannon CEA (1948) Mathematical theory of communication. Bell Sys Tech J 27(3):379–423CrossRef Shannon CEA (1948) Mathematical theory of communication. Bell Sys Tech J 27(3):379–423CrossRef
8.
go back to reference Potamias G, Koumakis L, Moustakis V (2004) Gene selection via discretized gene-expression profiles and greedy feature-elimination. Meth Appl Artif Intelligence 3025:256–266CrossRef Potamias G, Koumakis L, Moustakis V (2004) Gene selection via discretized gene-expression profiles and greedy feature-elimination. Meth Appl Artif Intelligence 3025:256–266CrossRef
9.
go back to reference Li L, Weinberg CR, Darden TA, Pedersen LG (2001) Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17(12):1131–1142CrossRefPubMed Li L, Weinberg CR, Darden TA, Pedersen LG (2001) Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17(12):1131–1142CrossRefPubMed
10.
go back to reference Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:480–484CrossRef Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:480–484CrossRef
12.
13.
go back to reference Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, New York Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, New York
14.
go back to reference Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Ian H (2009) The WEKA data mining software: an update. SIGKDD Explorations 11(1) Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Ian H (2009) The WEKA data mining software: an update. SIGKDD Explorations 11(1)
16.
go back to reference Hutcheson IR et al (2007) Heregulin beta1 drives gefitinib-resistant growth and invasion in tamoxifen-resistant MCF-7 breast cancer cells. Breast Cancer Res 9(4):50CrossRef Hutcheson IR et al (2007) Heregulin beta1 drives gefitinib-resistant growth and invasion in tamoxifen-resistant MCF-7 breast cancer cells. Breast Cancer Res 9(4):50CrossRef
17.
go back to reference Geistlinger L, Csaba G, Küffner R, Mulde N, Zimmer R (2011) From sets to graphs towards a realistic enrichment analysis of transcriptomic systems. Bioinformatics 27(13):366–373CrossRef Geistlinger L, Csaba G, Küffner R, Mulde N, Zimmer R (2011) From sets to graphs towards a realistic enrichment analysis of transcriptomic systems. Bioinformatics 27(13):366–373CrossRef
18.
go back to reference Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, Kim CJ, Kusanovic JP, Romero R (2009) A novel signaling pathway impact analysis. Bioinformatics 25(1):75–82CrossRefPubMedPubMedCentral Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, Kim CJ, Kusanovic JP, Romero R (2009) A novel signaling pathway impact analysis. Bioinformatics 25(1):75–82CrossRefPubMedPubMedCentral
19.
go back to reference Judeh T, Johnson C, Kumar A, Zhu D (2013) TEAK: Topology Enrichment Analysis frameworK for detecting activated biological subpathways. Nucleic Acids Res 41(1):1425–1437CrossRefPubMedPubMedCentral Judeh T, Johnson C, Kumar A, Zhu D (2013) TEAK: Topology Enrichment Analysis frameworK for detecting activated biological subpathways. Nucleic Acids Res 41(1):1425–1437CrossRefPubMedPubMedCentral
20.
Metadata
Title
Integrating Microarray Data and GRNs
Authors
L. Koumakis
G. Potamias
M. Tsiknakis
M. Zervakis
V. Moustakis
Copyright Year
2015
Publisher
Springer New York
DOI
https://doi.org/10.1007/7651_2015_252