Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

Integrating Topic Model and Heterogeneous Information Network for Aspect Mining with Rating Bias

Authors: Yugang Ji, Chuan Shi, Fuzhen Zhuang, Philip S. Yu

Published in: Advances in Knowledge Discovery and Data Mining

Publisher: Springer International Publishing

share
SHARE

Abstract

Recently, there is a surge of research on aspect mining, where the goal is to predict aspect ratings of shops with reviews and overall ratings. Traditional methods assumed that aspect ratings in a specific review text are of the same level, which equal to the corresponding overall rating. However, recent research reveals a different phenomenon: there is an obvious rating bias between aspect ratings and overall ratings. Moreover, these methods usually analyze aspect ratings of reviews with topic models at textual level, while totally ignore potentially structural information among multiple entities (users, shops, reviews), which can be captured by a Heterogeneous Information Network (HIN). In this paper, we present a novel model integrating Topic model and HIN for Aspect Mining with rating bias (called THAM). Firstly, a phrase-level LDA model is designed to extract topic distributions of reviews by using textual information. Secondly, making full use of structural information, we constructs a topic propagation network, and propagate topic distributions in this heterogeneous network. Finally, by setting review as the sharing factor, the two parts are integrated into a uniform optimization framework. Experimental results on two real datasets demonstrate that THAM achieves significant performance improvement, compared to the state of the arts.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Literature
1.
go back to reference Bauman, K., Liu, B., Tuzhilin, A.: Aspect based recommendations: recommending items with the most valuable aspects based on user reviews. In: The ACM SIGKDD International Conference, pp. 717–725 (2017) Bauman, K., Liu, B., Tuzhilin, A.: Aspect based recommendations: recommending items with the most valuable aspects based on user reviews. In: The ACM SIGKDD International Conference, pp. 717–725 (2017)
2.
go back to reference Laddha, A., Mukherjee, A.: Aspect opinion expression and rating prediction via LDA-CRF hybrid. Nat. Lang. Eng. 24, 1–29 (2018) CrossRef Laddha, A., Mukherjee, A.: Aspect opinion expression and rating prediction via LDA-CRF hybrid. Nat. Lang. Eng. 24, 1–29 (2018) CrossRef
3.
go back to reference Li, H., Lin, R., Hong, R., Ge, Y.: Generative models for mining latent aspects and their ratings from short reviews. In: 2015 IEEE International Conference on Data Mining, ICDM 2015, Atlantic City, NJ, USA, 14–17 November 2015, pp. 241–250 (2015) Li, H., Lin, R., Hong, R., Ge, Y.: Generative models for mining latent aspects and their ratings from short reviews. In: 2015 IEEE International Conference on Data Mining, ICDM 2015, Atlantic City, NJ, USA, 14–17 November 2015, pp. 241–250 (2015)
5.
go back to reference Lu, Y., Zhai, C., Sundaresan, N.: Rated aspect summarization of short comments. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, Madrid, Spain, 20–24 April 2009, pp. 131–140 (2009) Lu, Y., Zhai, C., Sundaresan, N.: Rated aspect summarization of short comments. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, Madrid, Spain, 20–24 April 2009, pp. 131–140 (2009)
6.
go back to reference Luo, W., Zhuang, F., Cheng, X., He, Q., Shi, Z.: Ratable aspects over sentiments: predicting ratings for unrated reviews. In: 2014 IEEE International Conference on Data Mining, ICDM 2014, Shenzhen, China, 14–17 December 2014, pp. 380–389 (2014) Luo, W., Zhuang, F., Cheng, X., He, Q., Shi, Z.: Ratable aspects over sentiments: predicting ratings for unrated reviews. In: 2014 IEEE International Conference on Data Mining, ICDM 2014, Shenzhen, China, 14–17 December 2014, pp. 380–389 (2014)
7.
go back to reference Luo, W., Zhuang, F., Zhao, W., He, Q., Shi, Z.: QPLSA: utilizing quad-tuples for aspect identification and rating. Inf. Process. Manag. 51(1), 25–41 (2015) CrossRef Luo, W., Zhuang, F., Zhao, W., He, Q., Shi, Z.: QPLSA: utilizing quad-tuples for aspect identification and rating. Inf. Process. Manag. 51(1), 25–41 (2015) CrossRef
8.
go back to reference Moghaddam, S., Ester, M.: The FLDA model for aspect-based opinion mining: addressing the cold start problem. In: International Conference on World Wide Web, pp. 909–918 (2013) Moghaddam, S., Ester, M.: The FLDA model for aspect-based opinion mining: addressing the cold start problem. In: International Conference on World Wide Web, pp. 909–918 (2013)
9.
go back to reference Pecar, S.: Towards opinion summarization of customer reviews. In: Proceedings of ACL 2018, Student Research Workshop, pp. 1–8 (2018) Pecar, S.: Towards opinion summarization of customer reviews. In: Proceedings of ACL 2018, Student Research Workshop, pp. 1–8 (2018)
10.
go back to reference Schouten, K., van der Weijde, O., Frasincar, F., Dekker, R.: Supervised and unsupervised aspect category detection for sentiment analysis with co-occurrence data. IEEE Trans. Cybern. 48(4), 1263–1275 (2018) CrossRef Schouten, K., van der Weijde, O., Frasincar, F., Dekker, R.: Supervised and unsupervised aspect category detection for sentiment analysis with co-occurrence data. IEEE Trans. Cybern. 48(4), 1263–1275 (2018) CrossRef
11.
go back to reference Shi, C., Li, Y., Zhang, J., Sun, Y., Yu, P.S.: A survey of heterogeneous information network analysis. IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2017) CrossRef Shi, C., Li, Y., Zhang, J., Sun, Y., Yu, P.S.: A survey of heterogeneous information network analysis. IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2017) CrossRef
12.
go back to reference Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., Wu, T.: RankClus: integrating clustering with ranking for heterogeneous information network analysis. In: ACM SIGKDD 2009, pp. 565–576 (2009) Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., Wu, T.: RankClus: integrating clustering with ranking for heterogeneous information network analysis. In: ACM SIGKDD 2009, pp. 565–576 (2009)
13.
go back to reference Wang, H., Ester, M.: A sentiment-aligned topic model for product aspect rating prediction. In: Conference on Empirical Methods in Natural Language Processing, pp. 1192–1202 (2014) Wang, H., Ester, M.: A sentiment-aligned topic model for product aspect rating prediction. In: Conference on Empirical Methods in Natural Language Processing, pp. 1192–1202 (2014)
14.
go back to reference Xiao, D., Ji, Y., Li, Y., Zhuang, F., Shi, C.: Coupled matrix factorization and topic modeling for aspect mining. Inf. Process. Manag. 54(6), 861–873 (2018) CrossRef Xiao, D., Ji, Y., Li, Y., Zhuang, F., Shi, C.: Coupled matrix factorization and topic modeling for aspect mining. Inf. Process. Manag. 54(6), 861–873 (2018) CrossRef
15.
go back to reference Yu, D., Mu, Y., Jin, Y.: Rating prediction using review texts with underlying sentiments. Inf. Process. Lett. 117, 10–18 (2017) MathSciNetCrossRef Yu, D., Mu, Y., Jin, Y.: Rating prediction using review texts with underlying sentiments. Inf. Process. Lett. 117, 10–18 (2017) MathSciNetCrossRef
Metadata
Title
Integrating Topic Model and Heterogeneous Information Network for Aspect Mining with Rating Bias
Authors
Yugang Ji
Chuan Shi
Fuzhen Zhuang
Philip S. Yu
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-16148-4_13

Premium Partner