Skip to main content
Top
Published in: Wireless Personal Communications 4/2018

29-03-2018

Intelligent Query-Based Data Aggregation Model and Optimized Query Ordering for Efficient Wireless Sensor Network

Authors: Prachi Sarode, R. Nandhini

Published in: Wireless Personal Communications | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Data aggregation algorithms play a primary role in WSN, as it collects and aggregates the data in an energy efficient manner so that the life expectancy of the network is extended. This paper intends to develop a query-based aggregation model for WSN using the advanced optimization algorithm called group search optimization (GSO). The proposed model is constructed in such a way that the querying order (QO) can be ranked based on latency and throughput. Accordingly, the main objective of the proposed GSO-based QO is to minimize the latency and maximize the throughput of WSN. The proposed data aggregation model facilitates the network administrator to understand the best queries so that the performance of the base station can be improved. After framing the model, it compares the performance of GSO-based QO with the traditional PSO-based QO, FF-based QO, GA-based QO, ABC-based QO and GSO-based QO in terms of idle time and throughput. Thus the data aggregation performance of proposed GSO-based QO is superior to the traditional algorithms by attaining high throughput and low latency.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhou, F., Chen, Z., Guo, S., & Li, J. (2016). Maximizing lifetime of data-gathering trees with different aggregation modes in WSNs. IEEE Sensors Journal, 16(22), 8167–8177.CrossRef Zhou, F., Chen, Z., Guo, S., & Li, J. (2016). Maximizing lifetime of data-gathering trees with different aggregation modes in WSNs. IEEE Sensors Journal, 16(22), 8167–8177.CrossRef
2.
go back to reference Wang, C., Jiang, C., Tang, S., & Li, X. Y. (2012). SelectCast: Scalable data aggregation scheme in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 23(10), 1958–1969.CrossRef Wang, C., Jiang, C., Tang, S., & Li, X. Y. (2012). SelectCast: Scalable data aggregation scheme in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 23(10), 1958–1969.CrossRef
3.
go back to reference Chen, X., Hu, X., & Zhu, J. (2005). Minimum data aggregation time problem in wireless sensor networks. In International conference on mobile ad-hoc and sensor networks (pp. 133–142). Chen, X., Hu, X., & Zhu, J. (2005). Minimum data aggregation time problem in wireless sensor networks. In International conference on mobile ad-hoc and sensor networks (pp. 133–142).
4.
go back to reference Li, Y., Guo, L., & Prasad, S. K. (2010). An energy-efficient distributed algorithm for minimum-latency aggregation scheduling in wireless sensor networks. 2010 IEEE 30th international conference on distributed computing systems (pp. 827–836), Genova. Li, Y., Guo, L., & Prasad, S. K. (2010). An energy-efficient distributed algorithm for minimum-latency aggregation scheduling in wireless sensor networks. 2010 IEEE 30th international conference on distributed computing systems (pp. 827–836), Genova.
5.
go back to reference Wu, C., Liu, Y., Wu, F., Fan, W., & Tang, B. (2017). Graph-based data gathering scheme in WSNs with a mobility-constrained mobile sink. IEEE Access, 5, 19463–19477.CrossRef Wu, C., Liu, Y., Wu, F., Fan, W., & Tang, B. (2017). Graph-based data gathering scheme in WSNs with a mobility-constrained mobile sink. IEEE Access, 5, 19463–19477.CrossRef
6.
go back to reference Cheng, C. F., Li, L. H., & Wang, C. C. (2017). Data gathering with minimum number of relay packets in wireless sensor networks. IEEE Sensors Journal, 17(21), 7196–7208.CrossRef Cheng, C. F., Li, L. H., & Wang, C. C. (2017). Data gathering with minimum number of relay packets in wireless sensor networks. IEEE Sensors Journal, 17(21), 7196–7208.CrossRef
7.
go back to reference Nandhini, R., & Devarajan, N. (2013). An enhanced QoS provisioning for VoIP traffic in Wimax using channel aware cross layer scheduler. Jokull International journal, 63(8), 172–185. Nandhini, R., & Devarajan, N. (2013). An enhanced QoS provisioning for VoIP traffic in Wimax using channel aware cross layer scheduler. Jokull International journal, 63(8), 172–185.
8.
go back to reference Nandhini, R., & Devarajan, N. (2013). An improved channel aware cross layer designed scheduling for QoS enhancement in IEEE 802.16 wireless networks. Archives des science Journal, 66(3), 1–12. Nandhini, R., & Devarajan, N. (2013). An improved channel aware cross layer designed scheduling for QoS enhancement in IEEE 802.16 wireless networks. Archives des science Journal, 66(3), 1–12.
9.
go back to reference Nandhini, R., & Devarajan, N. (2014). A cross-layer scheduler with channel state information for guaranteed quality of service. Journal of Computer Science, 10(2), 255–263.CrossRef Nandhini, R., & Devarajan, N. (2014). A cross-layer scheduler with channel state information for guaranteed quality of service. Journal of Computer Science, 10(2), 255–263.CrossRef
10.
go back to reference Nandhini, R., & Devarajan, N. (2014). Comparison for WiMAX scheduling algorithms and proposal for quality of service improvement in WiMAX networks. American Journal of Applied Sciences, 11(1), 8–16.CrossRef Nandhini, R., & Devarajan, N. (2014). Comparison for WiMAX scheduling algorithms and proposal for quality of service improvement in WiMAX networks. American Journal of Applied Sciences, 11(1), 8–16.CrossRef
11.
go back to reference Nandhini, R. (2015). Cross-layer designed scheduling algorithm for QoS enhancement in Wireless Broadband networks. International Journal of Applied Engineering Research, 10(13), 33191–33196. ISSN 0973-4562. Nandhini, R. (2015). Cross-layer designed scheduling algorithm for QoS enhancement in Wireless Broadband networks. International Journal of Applied Engineering Research, 10(13), 33191–33196. ISSN 0973-4562.
12.
go back to reference Nandhini, R. (2015). Bandwidth reservation policy performance analysis in a wireless cellular network under non-exponential distributions. ARPN Journal of Engineering and Applied Sciences, 10(18). ISSN:1819-6608. Nandhini, R. (2015). Bandwidth reservation policy performance analysis in a wireless cellular network under non-exponential distributions. ARPN Journal of Engineering and Applied Sciences, 10(18). ISSN:1819-6608.
13.
go back to reference Camillò, A., Nati, M., Petrioli, C., Rossi, M., & Zorzi, M. (2013). IRIS: Integrated data gathering and interest dissemination system for wireless sensor networks. Ad Hoc Networks, 11(2), 654–671.CrossRef Camillò, A., Nati, M., Petrioli, C., Rossi, M., & Zorzi, M. (2013). IRIS: Integrated data gathering and interest dissemination system for wireless sensor networks. Ad Hoc Networks, 11(2), 654–671.CrossRef
14.
go back to reference Karasabun, E., Korpeoglu, I., & Aykanat, C. (2013). Active node determination for correlated data gathering in wireless sensor networks. Computer Networks, 57(5), 1124–1138.CrossRef Karasabun, E., Korpeoglu, I., & Aykanat, C. (2013). Active node determination for correlated data gathering in wireless sensor networks. Computer Networks, 57(5), 1124–1138.CrossRef
15.
go back to reference Arjmandi, H., Taki, M., & Lahouti, F. (2011). Lifetime maximized data gathering in wireless sensor networks using limited-order distributed source coding. Signal Processing, 91(11), 2661–2666.CrossRefMATH Arjmandi, H., Taki, M., & Lahouti, F. (2011). Lifetime maximized data gathering in wireless sensor networks using limited-order distributed source coding. Signal Processing, 91(11), 2661–2666.CrossRefMATH
16.
go back to reference Kalpakis, K., & Tang, S. (2009). A combinatorial algorithm for the maximum lifetime data gathering with aggregation problem in sensor networks. Computer Communications, 32(15), 1655–1665.CrossRef Kalpakis, K., & Tang, S. (2009). A combinatorial algorithm for the maximum lifetime data gathering with aggregation problem in sensor networks. Computer Communications, 32(15), 1655–1665.CrossRef
17.
go back to reference Huang, R., Zhang, Z., & Xu, G. (2011). Predictive model-aided filtering scheme of data-collection in WSN. The Journal of China Universities of Posts and Telecommunications, 18(2), 17–24.CrossRef Huang, R., Zhang, Z., & Xu, G. (2011). Predictive model-aided filtering scheme of data-collection in WSN. The Journal of China Universities of Posts and Telecommunications, 18(2), 17–24.CrossRef
18.
go back to reference Nanda, A., & Rath, A. K. (2016). Energy efficient and secure data aggregation with malicious aggregator node detection (ESMD) in WSNs. In IEEE 7th power India international conference (PIICON) (pp. 1–6), Bikaner, Rajasthan, India. Nanda, A., & Rath, A. K. (2016). Energy efficient and secure data aggregation with malicious aggregator node detection (ESMD) in WSNs. In IEEE 7th power India international conference (PIICON) (pp. 1–6), Bikaner, Rajasthan, India.
19.
go back to reference Nandhini, R., & Wategaonkar, D. N. (2016). A survey on reliability in wireless sensor network. Indian Journal of Science and Technology, 9(38). ISSN (Print): 0974-6846, ISSN (Online): 0974-5645. Nandhini, R., & Wategaonkar, D. N. (2016). A survey on reliability in wireless sensor network. Indian Journal of Science and Technology, 9(38). ISSN (Print): 0974-6846, ISSN (Online): 0974-5645.
20.
go back to reference Sarode, P., & Nandhini, R, APDA: Adaptive pruning & data aggregation algorithms for query based wireless sensor networks. In 2016 International conference IEEE global trends in signal processing, information computing and communication (ICGTSPICC) (pp. 219–224), Electronic ISBN: 978-1-5090-0467-6. Sarode, P., & Nandhini, R, APDA: Adaptive pruning & data aggregation algorithms for query based wireless sensor networks. In 2016 International conference IEEE global trends in signal processing, information computing and communication (ICGTSPICC) (pp. 219–224), Electronic ISBN: 978-1-5090-0467-6.
21.
go back to reference Nandhini, R., & Wategaonkar, D. N. (2016). Modelling of clustering and sectoring approach in WSN. In International conference on global trends in signal processing, information computing and communication (ICSPICC). Nandhini, R., & Wategaonkar, D. N. (2016). Modelling of clustering and sectoring approach in WSN. In International conference on global trends in signal processing, information computing and communication (ICSPICC).
22.
go back to reference Huangfu, W., Liu, Y., Duan, B., Sun, L., Ma, J., & Chen, C. (2008). EATA: Effectiveness based aggregation time allocation algorithm for wireless sensor networks. 2008 IEEE symposium on computers and communications (pp. 981–987) Marrakech. Huangfu, W., Liu, Y., Duan, B., Sun, L., Ma, J., & Chen, C. (2008). EATA: Effectiveness based aggregation time allocation algorithm for wireless sensor networks. 2008 IEEE symposium on computers and communications (pp. 981–987) Marrakech.
23.
go back to reference Madden, S., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2002). TAG: A tiny aggregation service for ad-hoc sensor networks. ACM SIGOPS operating systems review—OSDI ‘02: Proceedings of the 5th symposium on operating systems design and implementation (vol. 36 no. SI, pp. 131–146). Madden, S., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2002). TAG: A tiny aggregation service for ad-hoc sensor networks. ACM SIGOPS operating systems review—OSDI ‘02: Proceedings of the 5th symposium on operating systems design and implementation (vol. 36 no. SI, pp. 131–146).
24.
go back to reference Bagaa, M., Challal, Y., Ksentini, A., Derhab, A., & Badache, N. (2014). Data aggregation scheduling algorithms in wireless sensor networks: Solutions and challenges. IEEE Communications Surveys & Tutorials, 16(3), 1339–1368.CrossRef Bagaa, M., Challal, Y., Ksentini, A., Derhab, A., & Badache, N. (2014). Data aggregation scheduling algorithms in wireless sensor networks: Solutions and challenges. IEEE Communications Surveys & Tutorials, 16(3), 1339–1368.CrossRef
25.
go back to reference Bachir, A., Dohler, M., Watteyne, T., & Leung, K. K. (2010). MAC essentials for wireless sensor networks. IEEE Communications Surveys & Tutorials, 12(2), 222–248.CrossRef Bachir, A., Dohler, M., Watteyne, T., & Leung, K. K. (2010). MAC essentials for wireless sensor networks. IEEE Communications Surveys & Tutorials, 12(2), 222–248.CrossRef
26.
go back to reference Ha, N. P. K., Zalyubovskiy, V., & Choo, H. (2012). Delay-efficient data aggregation scheduling in duty-cycled wireless sensor networks. In Proceeding RACS ‘12 proceedings of the 2012 ACM research in applied computation symposium (pp. 203–208). Ha, N. P. K., Zalyubovskiy, V., & Choo, H. (2012). Delay-efficient data aggregation scheduling in duty-cycled wireless sensor networks. In Proceeding RACS ‘12 proceedings of the 2012 ACM research in applied computation symposium (pp. 203–208).
27.
go back to reference Brayner, A., Lopes, A., Meira, D., Vasconcelos, R., & Menezes, R. (2008). An adaptive in-network aggregation operator for query processing in wireless sensor networks. Journal of Systems and Software, 81(3), 328–342.CrossRefMATH Brayner, A., Lopes, A., Meira, D., Vasconcelos, R., & Menezes, R. (2008). An adaptive in-network aggregation operator for query processing in wireless sensor networks. Journal of Systems and Software, 81(3), 328–342.CrossRefMATH
28.
go back to reference Chatterjea, S., Nieberg, T., Meratnia, N., & Havinga, P. (2008). A distributed and self-organizing scheduling algorithm for energy-efficient data aggregation in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 4(4), 20.CrossRef Chatterjea, S., Nieberg, T., Meratnia, N., & Havinga, P. (2008). A distributed and self-organizing scheduling algorithm for energy-efficient data aggregation in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 4(4), 20.CrossRef
29.
go back to reference Bagaa, M., Younis, M., & Balasingham, I. (2015). Optimal strategies for data aggregation scheduling in wireless sensor networks. In 2015 IEEE global communications conference (GLOBECOM) (pp. 1–6), San Diego, CA. Bagaa, M., Younis, M., & Balasingham, I. (2015). Optimal strategies for data aggregation scheduling in wireless sensor networks. In 2015 IEEE global communications conference (GLOBECOM) (pp. 1–6), San Diego, CA.
30.
go back to reference Yousefi, H., Malekimajd, M., Ashouri, M., & Movaghar, A. (2015). Fast aggregation scheduling in wireless sensor networks. IEEE Transactions on Wireless Communications, 14(6), 3402–3414.CrossRef Yousefi, H., Malekimajd, M., Ashouri, M., & Movaghar, A. (2015). Fast aggregation scheduling in wireless sensor networks. IEEE Transactions on Wireless Communications, 14(6), 3402–3414.CrossRef
31.
go back to reference Chang, C. L., & Ho, K. Y. (2016). Slot assignment for TDMA MAC in industrial wireless sensor network. In 2016 IEEE/ACIS 15th international conference on computer and information science (ICIS) (pp. 1–5), Okayama. Chang, C. L., & Ho, K. Y. (2016). Slot assignment for TDMA MAC in industrial wireless sensor network. In 2016 IEEE/ACIS 15th international conference on computer and information science (ICIS) (pp. 1–5), Okayama.
32.
go back to reference Yan, M., Han, M., Ai, C., Cai, Z., & Li, Y. (2016). Data aggregation scheduling in probabilistic wireless networks with cognitive radio capability. In 2016 IEEE global communications conference (GLOBECOM) (pp. 1–6), Washington, DC. Yan, M., Han, M., Ai, C., Cai, Z., & Li, Y. (2016). Data aggregation scheduling in probabilistic wireless networks with cognitive radio capability. In 2016 IEEE global communications conference (GLOBECOM) (pp. 1–6), Washington, DC.
33.
go back to reference Ebrahimi, D., & Assi, C. (2016). On the interaction between scheduling and compressive data gathering in wireless sensor networks. IEEE Transactions on Wireless Communications, 15(4), 2845–2858.CrossRef Ebrahimi, D., & Assi, C. (2016). On the interaction between scheduling and compressive data gathering in wireless sensor networks. IEEE Transactions on Wireless Communications, 15(4), 2845–2858.CrossRef
34.
go back to reference Nandhini, R., & Devarajan, N. (2013). Channel quality based cross layer scheduling algorithm in Wimax networks. Life Sciences Journal, 10(2), 2498–2506. Nandhini, R., & Devarajan, N. (2013). Channel quality based cross layer scheduling algorithm in Wimax networks. Life Sciences Journal, 10(2), 2498–2506.
35.
go back to reference Xu, X., Ansari, R., Khokhar, A., & Vasilakos, A. V. (2015). Hierarchical data aggregation using compressive sensing (HDACS) in WSNs. ACM Transactions on Sensor Networks (TOSN), 11(3), 45.CrossRef Xu, X., Ansari, R., Khokhar, A., & Vasilakos, A. V. (2015). Hierarchical data aggregation using compressive sensing (HDACS) in WSNs. ACM Transactions on Sensor Networks (TOSN), 11(3), 45.CrossRef
36.
go back to reference Xu, X., Li, X. Y., & Song, M. (2013). Efficient aggregation scheduling in multihop wireless sensor networks with SINR constraints. IEEE Transactions on Mobile Computing, 12(12), 2518–2528.CrossRef Xu, X., Li, X. Y., & Song, M. (2013). Efficient aggregation scheduling in multihop wireless sensor networks with SINR constraints. IEEE Transactions on Mobile Computing, 12(12), 2518–2528.CrossRef
37.
go back to reference Xu, X., Li, X. Y., Wan, P. J., & Tang, S. (2012). Efficient scheduling for periodic aggregation queries in multihop sensor networks. IEEE/ACM Transactions on Networking, 20(3), 690–698.CrossRef Xu, X., Li, X. Y., Wan, P. J., & Tang, S. (2012). Efficient scheduling for periodic aggregation queries in multihop sensor networks. IEEE/ACM Transactions on Networking, 20(3), 690–698.CrossRef
38.
go back to reference Ma, J., Lou, W., & Li, X. Y. (2014). Contiguous link scheduling for data aggregation in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(7), 1691–1701.CrossRef Ma, J., Lou, W., & Li, X. Y. (2014). Contiguous link scheduling for data aggregation in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(7), 1691–1701.CrossRef
39.
go back to reference Bagaa, M., Younis, M., Djenouri, D., Derhab, A., & Badache, N. (2015). Distributed low-latency data aggregation scheduling in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 11(3), 49.CrossRef Bagaa, M., Younis, M., Djenouri, D., Derhab, A., & Badache, N. (2015). Distributed low-latency data aggregation scheduling in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 11(3), 49.CrossRef
40.
go back to reference Kasirajan, P., Larsen, C., & Jagannathan, S. (2012). A new data aggregation scheme via adaptive compression for wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 9(1), 5.CrossRef Kasirajan, P., Larsen, C., & Jagannathan, S. (2012). A new data aggregation scheme via adaptive compression for wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 9(1), 5.CrossRef
41.
go back to reference Jhumka, A., Bradbury, M., & Saginbekov, S. (2014). Efficient fault-tolerant collision-free data aggregation scheduling for wireless sensor networks. Journal of Parallel and Distributed Computing, 74(1), 1789–1801.CrossRefMATH Jhumka, A., Bradbury, M., & Saginbekov, S. (2014). Efficient fault-tolerant collision-free data aggregation scheduling for wireless sensor networks. Journal of Parallel and Distributed Computing, 74(1), 1789–1801.CrossRefMATH
42.
go back to reference Wang, P., He, Y., & Huang, L. (2013). Near optimal scheduling of data aggregation in wireless sensor networks. Ad Hoc Networks, 11(4), 1287–1296.CrossRef Wang, P., He, Y., & Huang, L. (2013). Near optimal scheduling of data aggregation in wireless sensor networks. Ad Hoc Networks, 11(4), 1287–1296.CrossRef
43.
go back to reference Davoodi, E., Zare, K., & Babaei, E. (2017). A GSO-based algorithm for combined heat and power dispatch problem with modified scrounger and ranger operators. Applied Thermal Engineering, 120, 36–48.CrossRef Davoodi, E., Zare, K., & Babaei, E. (2017). A GSO-based algorithm for combined heat and power dispatch problem with modified scrounger and ranger operators. Applied Thermal Engineering, 120, 36–48.CrossRef
44.
go back to reference He, S., Wu, Q. H., & Saunders, J. R. (2009). Group search optimizer: An optimization algorithm inspired by animal searching behavior. IEEE Transactions on Evolutionary Computation, 13(5), 973–990.CrossRef He, S., Wu, Q. H., & Saunders, J. R. (2009). Group search optimizer: An optimization algorithm inspired by animal searching behavior. IEEE Transactions on Evolutionary Computation, 13(5), 973–990.CrossRef
Metadata
Title
Intelligent Query-Based Data Aggregation Model and Optimized Query Ordering for Efficient Wireless Sensor Network
Authors
Prachi Sarode
R. Nandhini
Publication date
29-03-2018
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2018
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5646-0

Other articles of this Issue 4/2018

Wireless Personal Communications 4/2018 Go to the issue