Skip to main content
Top

2016 | OriginalPaper | Chapter

Interaction of Cracks and Domain Structures in Thin Ferroelectric Films

Authors : D. Schrade, R. Müller, D. Gross

Published in: Recent Trends in Fracture and Damage Mechanics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The fracture behavior of ferroelectric materials is a complex problem that has been addressed in numerous experimental and theoretical studies. Several factors have been identified to play an important role, such as the applied electric field, the medium inside the crack, the electrical conditions on the crack faces, and polarization switching at or near the crack tip. In this investigation, a phase field model for ferroelectric domain evolution is used to calculate crack tip driving forces for mode-I cracks in barium titanate thin films. The driving forces are obtained by employing the theory of configurational forces, which is equivalent to considering the J-integral. Simulations are done for permeable, impermeable, semi-permeable, and energetically consistent crack face conditions with both air and water as crack medium. The finite element calculations are performed for films with thicknesses varying from 5 to 30 nm. The results show that the impermeable, semi-permeable and energetically consistent conditions lead to similar crack tip driving forces if air is used as crack medium. In the absence of mechanical loading, strong electric fields result in a closing crack tip driving force, while the use of water as crack medium leads to opposite driving forces. It can be confirmed that polarization switching at the crack tip has a significant effect on the driving force.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdollahi A, Arias I (2012) Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions. J Mech Phys Solids 60(12):2100–2126MathSciNetCrossRef Abdollahi A, Arias I (2012) Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions. J Mech Phys Solids 60(12):2100–2126MathSciNetCrossRef
2.
go back to reference Arlt G, Sasko P (1980) Domain configuration and equilibrium size of domains in BaTiO3 ceramics. J Appl Phys 51(9):4956–4960 Arlt G, Sasko P (1980) Domain configuration and equilibrium size of domains in BaTiO3 ceramics. J Appl Phys 51(9):4956–4960
3.
go back to reference Beom HG, Atluri SN (2003) Effect of electric fields on fracture behavior of ferroelectric ceramics. J Mech Phys Solids 51(6):1107–1125CrossRefMATH Beom HG, Atluri SN (2003) Effect of electric fields on fracture behavior of ferroelectric ceramics. J Mech Phys Solids 51(6):1107–1125CrossRefMATH
4.
go back to reference Chen YH, Hasebe N (2005) Current understanding on fracture behaviors of ferroelectric/piezoelectric materials. J Intell Mater Syst Struct 16:673–687CrossRef Chen YH, Hasebe N (2005) Current understanding on fracture behaviors of ferroelectric/piezoelectric materials. J Intell Mater Syst Struct 16:673–687CrossRef
5.
go back to reference Deeg WF (1980) The analysis of dislocation, cracks, and inclusion problems in piezoelectric solids. Ph.D. thesis, Stanford University, Stanford Deeg WF (1980) The analysis of dislocation, cracks, and inclusion problems in piezoelectric solids. Ph.D. thesis, Stanford University, Stanford
6.
go back to reference Fang D, Jiang Y, Li S, Sun CT (2007) Interactions between domain switching and crack propagation in poled BaTiO3 single crystal under mechanical loading. Acta Mater 55(17):5758–5767CrossRef Fang D, Jiang Y, Li S, Sun CT (2007) Interactions between domain switching and crack propagation in poled BaTiO3 single crystal under mechanical loading. Acta Mater 55(17):5758–5767CrossRef
7.
go back to reference Gurtin ME (1996) Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92(3–4):178–192MathSciNetCrossRefMATH Gurtin ME (1996) Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92(3–4):178–192MathSciNetCrossRefMATH
8.
go back to reference Hao TH, Shen ZY (1994) A new electric boundary condition of electric fracture mechanics and its applications. Eng Fract Mech 47:793–802CrossRef Hao TH, Shen ZY (1994) A new electric boundary condition of electric fracture mechanics and its applications. Eng Fract Mech 47:793–802CrossRef
9.
go back to reference Jiang LZ, Sun CT (2001) Analysis of indentation cracking in piezoceramics. Int J Solids Struct 38(10–13):1903–1918CrossRefMATH Jiang LZ, Sun CT (2001) Analysis of indentation cracking in piezoceramics. Int J Solids Struct 38(10–13):1903–1918CrossRefMATH
10.
go back to reference Keip MA, Schrade D, Thai HNM, Schröder J, Svendsen B, Müller R, Gross D (2015) Coordinate-invariant phase field modeling of ferroelectrics, part II: application to composites and polycrystals. GAMM-Mitteilungen 38(1):115–131 Keip MA, Schrade D, Thai HNM, Schröder J, Svendsen B, Müller R, Gross D (2015) Coordinate-invariant phase field modeling of ferroelectrics, part II: application to composites and polycrystals. GAMM-Mitteilungen 38(1):115–131
12.
go back to reference Landis CM (2004) Energetically consistent boundary conditions for electromechanical fracture. Int J Solids Struct 41:6291–6315CrossRefMATH Landis CM (2004) Energetically consistent boundary conditions for electromechanical fracture. Int J Solids Struct 41:6291–6315CrossRefMATH
13.
go back to reference Li Q, Kuna M (2012) Evaluation of electromechanical fracture behavior by configurational forces in cracked ferroelectric polycrystals. Comput Mater Sci 57:94–101CrossRef Li Q, Kuna M (2012) Evaluation of electromechanical fracture behavior by configurational forces in cracked ferroelectric polycrystals. Comput Mater Sci 57:94–101CrossRef
14.
go back to reference Li W, Landis CM (2011) Nucleation and growth of domains near crack tips in single crystal ferroelectrics. Eng Fract Mech 78(7):1505–1513CrossRef Li W, Landis CM (2011) Nucleation and growth of domains near crack tips in single crystal ferroelectrics. Eng Fract Mech 78(7):1505–1513CrossRef
15.
go back to reference Li Y, Sun Y, Li F (2013) Domain texture dependent fracture behavior in mechanically poled/depoled ferroelectric ceramics. Ceram Int 39(8):8605–8614CrossRef Li Y, Sun Y, Li F (2013) Domain texture dependent fracture behavior in mechanically poled/depoled ferroelectric ceramics. Ceram Int 39(8):8605–8614CrossRef
16.
17.
go back to reference McMeeking RM (2004) The energy release rate for a griffith crack in a piezoelectric material. Eng Fract Mech 71:1149–1163CrossRef McMeeking RM (2004) The energy release rate for a griffith crack in a piezoelectric material. Eng Fract Mech 71:1149–1163CrossRef
18.
go back to reference Meschke F, Kolleck A, Schneider GA (1997) R-curve behavior of BaTiO3 due to stress-induced ferroelastic domain switching. J Eur Ceram Soc 17:1143–1149CrossRef Meschke F, Kolleck A, Schneider GA (1997) R-curve behavior of BaTiO3 due to stress-induced ferroelastic domain switching. J Eur Ceram Soc 17:1143–1149CrossRef
20.
go back to reference Mueller R, Kolling S, Gross D (2002) On configurational forces in the context of the finite element method. Int J Numer Meth Eng 53(7):1557–1574MathSciNetCrossRefMATH Mueller R, Kolling S, Gross D (2002) On configurational forces in the context of the finite element method. Int J Numer Meth Eng 53(7):1557–1574MathSciNetCrossRefMATH
21.
go back to reference Park S, Sun CT (1995) Fracture criteria for piezoelectric ceramics. J Eur Ceramics Soc 78(6):1475–1480CrossRef Park S, Sun CT (1995) Fracture criteria for piezoelectric ceramics. J Eur Ceramics Soc 78(6):1475–1480CrossRef
22.
23.
go back to reference Qiao H, Wang J, Chen W (2012) Phase field simulation of domain switching in ferroelctric single crystal with electrically permeable and impermeable cracks. Acta Mech Sol Sinica 25(1):1–8CrossRef Qiao H, Wang J, Chen W (2012) Phase field simulation of domain switching in ferroelctric single crystal with electrically permeable and impermeable cracks. Acta Mech Sol Sinica 25(1):1–8CrossRef
24.
go back to reference Ricoeur A, Kuna M (2003) Influence of electric fields on the fracture of ferroelectric ceramics. J Eur Ceram Soc 23(8):1313–1328CrossRef Ricoeur A, Kuna M (2003) Influence of electric fields on the fracture of ferroelectric ceramics. J Eur Ceram Soc 23(8):1313–1328CrossRef
25.
go back to reference Schmitt LA, Schönau KA, Theissmann R, Fuess H, Kungl H, Hoffmann M (2007) Composition dependence of the domain configuration and size in Pb(Zr1−x Ti x )O3 ceramics. J Appl Phys 101(7):074107 Schmitt LA, Schönau KA, Theissmann R, Fuess H, Kungl H, Hoffmann M (2007) Composition dependence of the domain configuration and size in Pb(Zr1−x Ti x )O3 ceramics. J Appl Phys 101(7):074107
26.
go back to reference Schrade D, Mueller R, Xu BX, Gross D (2007) Domain evolution in ferroelectric materials: a continuum phase field model and finite element implementation. Comput Meth Appl Mech Eng 196(41–44):4365–4374CrossRefMATH Schrade D, Mueller R, Xu BX, Gross D (2007) Domain evolution in ferroelectric materials: a continuum phase field model and finite element implementation. Comput Meth Appl Mech Eng 196(41–44):4365–4374CrossRefMATH
27.
go back to reference Schrade D, Müller R, Gross D (2013) On the physical interpretation of material parameters in phase field models for ferroelectrics. Arch Appl Mech 83:1393–1413CrossRefMATH Schrade D, Müller R, Gross D (2013) On the physical interpretation of material parameters in phase field models for ferroelectrics. Arch Appl Mech 83:1393–1413CrossRefMATH
28.
go back to reference Schrade D, Müller R, Gross D, Keip MA, Thai H, Schröder J (2014) An invariant formulation for phase field models in ferroelectrics. Int J Solids Struct 51:2144–2156CrossRef Schrade D, Müller R, Gross D, Keip MA, Thai H, Schröder J (2014) An invariant formulation for phase field models in ferroelectrics. Int J Solids Struct 51:2144–2156CrossRef
29.
go back to reference Schrade D, Keip MA, Thai HNM, Schröder J, Svendsen B, Müller R, Gross D (2015a) Coordinate-invariant phase field modeling of ferroelectrics, part I: model formulation and single-crystal simulations. GAMM-Mitteilungen 38(1):102–114 Schrade D, Keip MA, Thai HNM, Schröder J, Svendsen B, Müller R, Gross D (2015a) Coordinate-invariant phase field modeling of ferroelectrics, part I: model formulation and single-crystal simulations. GAMM-Mitteilungen 38(1):102–114
30.
go back to reference Schrade D, Müller R, Gross D, Steinmann P (2015) Phase field simulations of the poling behavior of BaTiO3 nano-scale thin films with SrRuO3 and Au electrodes. Eur J Mech A/Solids 49:455–466CrossRef Schrade D, Müller R, Gross D, Steinmann P (2015) Phase field simulations of the poling behavior of BaTiO3 nano-scale thin films with SrRuO3 and Au electrodes. Eur J Mech A/Solids 49:455–466CrossRef
31.
go back to reference Song YC, Soh AK, Ni Y (2007) Phase field simulation of crack tip domain switching in ferroelectrics. J Phys D Appl Phys 40(4):1175–1182CrossRef Song YC, Soh AK, Ni Y (2007) Phase field simulation of crack tip domain switching in ferroelectrics. J Phys D Appl Phys 40(4):1175–1182CrossRef
32.
go back to reference Su Y, Landis CM (2007) Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning. J Mech Phys Solids 55(2):280–305MathSciNetCrossRefMATH Su Y, Landis CM (2007) Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning. J Mech Phys Solids 55(2):280–305MathSciNetCrossRefMATH
33.
go back to reference Su Y, Chen H, Li JJ, Soh AK, Weng GJ (2011) Effects of surface tension on the size-dependent ferroelectric characteristics of free-standing BaTiO3 nano-thin films. J Appl Phys 110(084108):1–6 Su Y, Chen H, Li JJ, Soh AK, Weng GJ (2011) Effects of surface tension on the size-dependent ferroelectric characteristics of free-standing BaTiO3 nano-thin films. J Appl Phys 110(084108):1–6
34.
36.
go back to reference Tenne DA, Turner P, Schmidt JD, Biegalski M, Li YL, Chen LQ, Soukiassian A, Trolier-McKinstry S, Schlom DG, Xi XX, Fong DD, Fuoss PH, Eastman JA, Stephenson GB, Thompson C, Streiffer SK (2009) Ferroelectricity in ultrathin BaTiO3 films: probing the size effect by ultraviolet Raman spectroscopy. Phys Rev Lett 103(177601):1–4 Tenne DA, Turner P, Schmidt JD, Biegalski M, Li YL, Chen LQ, Soukiassian A, Trolier-McKinstry S, Schlom DG, Xi XX, Fong DD, Fuoss PH, Eastman JA, Stephenson GB, Thompson C, Streiffer SK (2009) Ferroelectricity in ultrathin BaTiO3 films: probing the size effect by ultraviolet Raman spectroscopy. Phys Rev Lett 103(177601):1–4
37.
go back to reference Wang J, Landis CM (2004) On the fracture toughness of ferroelectric ceramics with electric field applied parallel to the crack front. Acta Mater 52(12):3435–3446CrossRef Wang J, Landis CM (2004) On the fracture toughness of ferroelectric ceramics with electric field applied parallel to the crack front. Acta Mater 52(12):3435–3446CrossRef
38.
go back to reference Wang J, Zhang TY (2007) Phase field simulations of polarization switching-induced toughening in ferroelectric ceramics. Acta Mater 55(7):2465–2477CrossRef Wang J, Zhang TY (2007) Phase field simulations of polarization switching-induced toughening in ferroelectric ceramics. Acta Mater 55(7):2465–2477CrossRef
39.
go back to reference Xu BX, Schrade D, Gross D, Mueller R (2010) Phase field simulation of domain structures in cracked ferroelectrics. Int J Fract 165:163–173CrossRefMATH Xu BX, Schrade D, Gross D, Mueller R (2010) Phase field simulation of domain structures in cracked ferroelectrics. Int J Fract 165:163–173CrossRefMATH
40.
go back to reference Zhang TY, Gao CF (2004) Fracture behaviors of piezoelectric materials. Theor Appl Fract Mech 41(1–3):339–379CrossRef Zhang TY, Gao CF (2004) Fracture behaviors of piezoelectric materials. Theor Appl Fract Mech 41(1–3):339–379CrossRef
Metadata
Title
Interaction of Cracks and Domain Structures in Thin Ferroelectric Films
Authors
D. Schrade
R. Müller
D. Gross
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-21467-2_10

Premium Partners