Skip to main content
Top

2017 | OriginalPaper | Chapter

3. Interaction of Hydrogen with a Graphene Plane of Carbon Nanotubes and Graphene

Authors : Sergey Bulyarskiy, Alexandr S. Basaev, Darya A. Bogdanova

Published in: Doping of Carbon Nanotubes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chapter 3 examines the reaction of hydrogen with CNTs. We have made an overview that describes the existing scientific literature experimental results and calculations on the interaction of hydrogen with CNTs. Review of the literature shows the prospect of using nanotubes as hydrogen storage, we continue this in the chapter, confirming the research via calculations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T.K. Ghosh, M.A. Prelas, Energy Resources and Systems: Volume 2: Renewable Resources (Springer, Berlin, 2011), pp. 495—628 T.K. Ghosh, M.A. Prelas, Energy Resources and Systems: Volume 2: Renewable Resources (Springer, Berlin, 2011), pp. 495—628
2.
go back to reference L.L. Vasiliev, L.E. Kanonchik, G. Kulakov, D.A. Mishkinis, Activated carbon and hydrogen adsorption storage. Hydrogen Mater. Sci. Chem. Carbon Nanomaterials, 633–651 (2007) L.L. Vasiliev, L.E. Kanonchik, G. Kulakov, D.A. Mishkinis, Activated carbon and hydrogen adsorption storage. Hydrogen Mater. Sci. Chem. Carbon Nanomaterials, 633–651 (2007)
3.
go back to reference S.V. Bulyarskiy, Uglerodnye nanotrubky: techologya, upravlenie svoystvami, primenenie. Ulyanovsk, Streshen (2011), 479s. (Rus.) S.V. Bulyarskiy, Uglerodnye nanotrubky: techologya, upravlenie svoystvami, primenenie. Ulyanovsk, Streshen (2011), 479s. (Rus.)
4.
go back to reference V.A. Eletskiy, Sorption properties of carbon nanostructures. Adv. Phys. Sci. 174(11), 1191–1231 (2004) V.A. Eletskiy, Sorption properties of carbon nanostructures. Adv. Phys. Sci. 174(11), 1191–1231 (2004)
5.
go back to reference A.C. Dillon, K.M. Jonse, T.A. Bekkedhai, C.H. Kiang, Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997) A.C. Dillon, K.M. Jonse, T.A. Bekkedhai, C.H. Kiang, Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997)
6.
go back to reference K.K. Murata, K. Kaneko, Adsorption mechanism of supercritical hydrogen in internal and interstitial nanospaces of single-wall carbon nanohorn assembly. J. Phys. Chem. B. 106, 1132–1138 (2002) K.K. Murata, K. Kaneko, Adsorption mechanism of supercritical hydrogen in internal and interstitial nanospaces of single-wall carbon nanohorn assembly. J. Phys. Chem. B. 106, 1132–1138 (2002)
7.
go back to reference V. Gayathri, R. Geetha, Hydrogen adsorption in defected carbon nanotubes. Adsorption 13, 53–60 (2007) V. Gayathri, R. Geetha, Hydrogen adsorption in defected carbon nanotubes. Adsorption 13, 53–60 (2007)
8.
go back to reference Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74, 2307—2309 (1999) Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74, 2307—2309 (1999)
9.
go back to reference C. Liu, Y.Y. Fan, M. Liu, H.T. Conga, H.M. Cheng, M.S. Dresselhaus, Hydrogen in single-walled carbon nanotubes at room temperature. Science 286, 1127—1132 (1999) C. Liu, Y.Y. Fan, M. Liu, H.T. Conga, H.M. Cheng, M.S. Dresselhaus, Hydrogen in single-walled carbon nanotubes at room temperature. Science 286, 1127—1132 (1999)
10.
go back to reference K.K. Murata, K. Kaneko, Adsorption mechanism of supercritical hydrogen in internal and interstitial nanospaces of single-wall carbon nanohorn assembly. J. Phys. Chem. B. 106, 1132–1138 (2002) K.K. Murata, K. Kaneko, Adsorption mechanism of supercritical hydrogen in internal and interstitial nanospaces of single-wall carbon nanohorn assembly. J. Phys. Chem. B. 106, 1132–1138 (2002)
11.
go back to reference Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74, 2307—2309 (1999) Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74, 2307—2309 (1999)
12.
go back to reference A.G. Lipson, B.F. Lyakhov, E.I. Saunin, A.Y. Tsivadze, Hydrogen accumulation by single-walled carbon nanotubes encapsulated in the palladium matrix. Doklady Phys. Chem. 414(2), 143–146 (2007) A.G. Lipson, B.F. Lyakhov, E.I. Saunin, A.Y. Tsivadze, Hydrogen accumulation by single-walled carbon nanotubes encapsulated in the palladium matrix. Doklady Phys. Chem. 414(2), 143–146 (2007)
13.
go back to reference H. Zhu, A. Cao, X. Li et al., Hydrogen adsorption in bundles of well-aligned carbon nanotubes at room temperature. Appl. Surf. Sci. 178(1–4), 50–55 (2001)ADSCrossRef H. Zhu, A. Cao, X. Li et al., Hydrogen adsorption in bundles of well-aligned carbon nanotubes at room temperature. Appl. Surf. Sci. 178(1–4), 50–55 (2001)ADSCrossRef
14.
go back to reference Y. Ye, C. Ahn, C. Witham et al., Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74(16), 2307–2309 (1999)ADSCrossRef Y. Ye, C. Ahn, C. Witham et al., Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74(16), 2307–2309 (1999)ADSCrossRef
15.
go back to reference C. Liu, Y.Y. Fan, M. Liu et al., Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286(5442), 1127–1129 (1999)CrossRef C. Liu, Y.Y. Fan, M. Liu et al., Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286(5442), 1127–1129 (1999)CrossRef
16.
go back to reference R.O. Loutfy, A. Moravsky, A. Franco et al., Physical hydrogen storage on nanotubes and nanocarbon materials, in Perspectives of Fullerene Nanotechnology ed. by E. Ōsawa (Springer, Berlin 2002) pp. 327—339 R.O. Loutfy, A. Moravsky, A. Franco et al., Physical hydrogen storage on nanotubes and nanocarbon materials, in Perspectives of Fullerene Nanotechnology ed. by E. Ōsawa (Springer, Berlin 2002) pp. 327—339
17.
go back to reference G.Q. Ning, F. Wei, G.H. Luo, Q.X. Wang, Y.L. Wu, H. Yu, Hydrogen storage in multi-wall carbon nanotubes using samples up to 85 g. Appl. Phys. A 78(7), 955–959 (2004)ADSCrossRef G.Q. Ning, F. Wei, G.H. Luo, Q.X. Wang, Y.L. Wu, H. Yu, Hydrogen storage in multi-wall carbon nanotubes using samples up to 85 g. Appl. Phys. A 78(7), 955–959 (2004)ADSCrossRef
18.
go back to reference Dillon A. C., Gennett T., Alleman J. L., Jones K. M., Parilla P. A., Heben M. J., « Carbon Nanotube Materials for Hydrogen Storage »// Proceedings of the 2000 U.S. DOE Hydrogen Program Review, 9—11 May 2000, San Ramon, California. NREL/CP-570-28890. Golden, CO: National Renewable Energy Laboratory Vol. II: p. 421—440; NREL Report No. CP-570-32301 Dillon A. C., Gennett T., Alleman J. L., Jones K. M., Parilla P. A., Heben M. J., « Carbon Nanotube Materials for Hydrogen Storage »// Proceedings of the 2000 U.S. DOE Hydrogen Program Review, 9—11 May 2000, San Ramon, California. NREL/CP-570-28890. Golden, CO: National Renewable Energy Laboratory Vol. II: p. 421—440; NREL Report No. CP-570-32301
19.
go back to reference A.C. Dillon, T. Gennett, J.L. Alleman, K.M. Jones, P. Parilla, M.J. Heben, Carbon nanotube materials for hydrogen storage. Proceedings of the 1999 U.S. DOE Hydrogen Program Review, 4–6 May 1999, Lakewood, Colorado. NREL/CP-570-26938. Golden, CO: National Renewable Energy Laboratory Vol. II: pp. 422–438; NREL Report No. CP-570-32269 A.C. Dillon, T. Gennett, J.L. Alleman, K.M. Jones, P. Parilla, M.J. Heben, Carbon nanotube materials for hydrogen storage. Proceedings of the 1999 U.S. DOE Hydrogen Program Review, 4–6 May 1999, Lakewood, Colorado. NREL/CP-570-26938. Golden, CO: National Renewable Energy Laboratory Vol. II: pp. 422–438; NREL Report No. CP-570-32269
20.
go back to reference A.C. Dillon, K.E.H. Gilbert, J.L. Alleman, T. Gennett, K.M. Jones, P.A. Parilla, M.J. Heben, Carbon nanotube materials for hydrogen storage. Proceedings of the 2001 U.S. DOE Hydrogen Program Review, 17–19 April 2001, Baltimore, Maryland. NREL/CP-610-30535. Golden, CO: National Renewable Energy Laboratory pp. 478–494; NREL Report No. CP-610-32314 A.C. Dillon, K.E.H. Gilbert, J.L. Alleman, T. Gennett, K.M. Jones, P.A. Parilla, M.J. Heben, Carbon nanotube materials for hydrogen storage. Proceedings of the 2001 U.S. DOE Hydrogen Program Review, 17–19 April 2001, Baltimore, Maryland. NREL/CP-610-30535. Golden, CO: National Renewable Energy Laboratory pp. 478–494; NREL Report No. CP-610-32314
21.
go back to reference C. Nutzenadel, H. Zuttel, D. Chartouni, L. Schlaphach, Electrochemical storage of hydrogen in nanotube materials Electrochem. Solid State Lett. 2(1), 30–32 (1999) C. Nutzenadel, H. Zuttel, D. Chartouni, L. Schlaphach, Electrochemical storage of hydrogen in nanotube materials Electrochem. Solid State Lett. 2(1), 30–32 (1999)
22.
go back to reference N. Rajalakshmi, K.S. Dhathathreyan, A. Govindaraj, B.C. Satishkumar, Electrochemical investigation of single-walled carbon nanotubes for hydrogen storage. Electrochim. Acta 45(27), 4511–4525 (2000)CrossRef N. Rajalakshmi, K.S. Dhathathreyan, A. Govindaraj, B.C. Satishkumar, Electrochemical investigation of single-walled carbon nanotubes for hydrogen storage. Electrochim. Acta 45(27), 4511–4525 (2000)CrossRef
23.
go back to reference M.C. Gordillo, J. Boronat, J. Casulleras, Isotopic effects of hydrogen adsorption in carbon nanotubes. Phys. Rev. B. 65(1), 014503 (2001)ADSCrossRef M.C. Gordillo, J. Boronat, J. Casulleras, Isotopic effects of hydrogen adsorption in carbon nanotubes. Phys. Rev. B. 65(1), 014503 (2001)ADSCrossRef
24.
go back to reference K.A. Williams, P.C. Eklund, Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes. Chem. Phys. Lett. 320(3–4), 352–358 (2000)ADSCrossRef K.A. Williams, P.C. Eklund, Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes. Chem. Phys. Lett. 320(3–4), 352–358 (2000)ADSCrossRef
25.
go back to reference S. Hammes-Schiffer, J.C. Tully, Proton transfer in solution: Molecular dynamics with quantum transitions. J. Chem. Phys. 101(6), 4657–4667 (1994)ADSCrossRef S. Hammes-Schiffer, J.C. Tully, Proton transfer in solution: Molecular dynamics with quantum transitions. J. Chem. Phys. 101(6), 4657–4667 (1994)ADSCrossRef
26.
go back to reference J.C. Tully, Molecular dynamics with electronic transitions. J. Chem. Phys. 93(2), 1061–1071 (1990)ADSCrossRef J.C. Tully, Molecular dynamics with electronic transitions. J. Chem. Phys. 93(2), 1061–1071 (1990)ADSCrossRef
27.
go back to reference A.S. Fedorov, P.B. Sorokin, Density and thermodynamics of hydrogen adsorbed on the surface of single-walled carbon nanotubes. Solid State Phys. 48(2), 377–382 (2006) A.S. Fedorov, P.B. Sorokin, Density and thermodynamics of hydrogen adsorbed on the surface of single-walled carbon nanotubes. Solid State Phys. 48(2), 377–382 (2006)
28.
go back to reference H. Cheng, A.C. Cooper, G.P. Pez, M.K. Kostov et al., Molecular dynamics simulations of hydrogen adsorption in finite and infinite bundles of single walled carbon nanotubes. Mol. Mater. Specif. Interact. Model. Design. 4, 469–485 (2007) H. Cheng, A.C. Cooper, G.P. Pez, M.K. Kostov et al., Molecular dynamics simulations of hydrogen adsorption in finite and infinite bundles of single walled carbon nanotubes. Mol. Mater. Specif. Interact. Model. Design. 4, 469–485 (2007)
29.
go back to reference R. Zidan, A.M. Rao, M. Au, Doped carbon nanotubes for hydrogen storage. Hydrogen, Fuel Cells, and Infrastructure Technologie, FY 2003 Progress Report (2003) R. Zidan, A.M. Rao, M. Au, Doped carbon nanotubes for hydrogen storage. Hydrogen, Fuel Cells, and Infrastructure Technologie, FY 2003 Progress Report (2003)
30.
go back to reference Z. Zhang, K. Cho, Ab initio study of hydrogen interaction with pure and nitrogen-doped carbon nanotubes. Phys. Rev. B. 75(7), 075420 (2007)ADSCrossRef Z. Zhang, K. Cho, Ab initio study of hydrogen interaction with pure and nitrogen-doped carbon nanotubes. Phys. Rev. B. 75(7), 075420 (2007)ADSCrossRef
31.
go back to reference Y. Fujimoto, S. Saito, Structure and stability of hydrogen atom adsorbed on nitrogen-doped carbon nanotubes. J. Phys: Conf. Ser. 302(1), 012006 (2011) Y. Fujimoto, S. Saito, Structure and stability of hydrogen atom adsorbed on nitrogen-doped carbon nanotubes. J. Phys: Conf. Ser. 302(1), 012006 (2011)
32.
go back to reference E. Rangel, G. Ruiz-Chavarria, L.F. Magana, J.S. Arellano, Hydrogen adsorption on N-decorated single wall carbon nanotubes. Phys. Lett. A. 373(30), 2588–2591 (2009)ADSCrossRef E. Rangel, G. Ruiz-Chavarria, L.F. Magana, J.S. Arellano, Hydrogen adsorption on N-decorated single wall carbon nanotubes. Phys. Lett. A. 373(30), 2588–2591 (2009)ADSCrossRef
33.
go back to reference T. Yildirim, S. Ciraci, Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys. Rev. Lett. 94(17), 175501 (2005)ADSCrossRef T. Yildirim, S. Ciraci, Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys. Rev. Lett. 94(17), 175501 (2005)ADSCrossRef
34.
go back to reference A. Sabir, W. Lu, C. Roland, J. Bernholc, Ab inito simulations of H2 in Li-doped carbon nanotube systems. J. Phys. Condens. Matter 19(8), 086226 (2007) A. Sabir, W. Lu, C. Roland, J. Bernholc, Ab inito simulations of H2 in Li-doped carbon nanotube systems. J. Phys. Condens. Matter 19(8), 086226 (2007)
35.
go back to reference X. Wu, Y. Gao, X.C. Zeng, Hydrogen storage in pillared Li-dispersed boron carbide nanotubes. J. Phys. Chem. C 112(22), 8458–8463 (2008)CrossRef X. Wu, Y. Gao, X.C. Zeng, Hydrogen storage in pillared Li-dispersed boron carbide nanotubes. J. Phys. Chem. C 112(22), 8458–8463 (2008)CrossRef
36.
go back to reference A. Allouche, Y. Ferro, T. Angot, C. Thomas, J.-M. Layet, Hydrogen adsorption on graphite (0001) surface: a combined spectroscopy-density-functional-theory study. J. Chem. Phys. 123(12), 124701 (2005)ADSCrossRef A. Allouche, Y. Ferro, T. Angot, C. Thomas, J.-M. Layet, Hydrogen adsorption on graphite (0001) surface: a combined spectroscopy-density-functional-theory study. J. Chem. Phys. 123(12), 124701 (2005)ADSCrossRef
37.
go back to reference P. Ruffieux, O. Gröning, M. Bielmann, P. Mauron, L. Schlapbach, P. Gröning, Hydrogen adsorption on sp2-bonded carbon: influence of the local curvature. Phys. Rev. B. 66(24), 245416 (2002)ADSCrossRef P. Ruffieux, O. Gröning, M. Bielmann, P. Mauron, L. Schlapbach, P. Gröning, Hydrogen adsorption on sp2-bonded carbon: influence of the local curvature. Phys. Rev. B. 66(24), 245416 (2002)ADSCrossRef
38.
go back to reference P. Ruffieux, O. Gröning, P. Schwaller, L. Schlapbach, P. Gröning, Hydrogen atoms cause long-range electronic effects on graphite. Phys. Rev. Lett. 84(21), 4910–4913 (2000)ADSCrossRef P. Ruffieux, O. Gröning, P. Schwaller, L. Schlapbach, P. Gröning, Hydrogen atoms cause long-range electronic effects on graphite. Phys. Rev. Lett. 84(21), 4910–4913 (2000)ADSCrossRef
39.
go back to reference L. Hornekær, Z. Sljivancanin, W. Xu, R. Otero, E. Rauls et al., Metastable structures and recombination pathways for atomic hydrogen on the graphite (0001) surface. Phys. Rev. Lett. 96(15), 156104 (2006)ADSCrossRef L. Hornekær, Z. Sljivancanin, W. Xu, R. Otero, E. Rauls et al., Metastable structures and recombination pathways for atomic hydrogen on the graphite (0001) surface. Phys. Rev. Lett. 96(15), 156104 (2006)ADSCrossRef
40.
go back to reference L. Hornekær, E. Rauls, W. Xu, Z. Sljivancanin, R. Otero, I. Stensgaard et al., Clustering of chemisorbed H(D) atoms on the graphite (0001) surface due to preferential sticking. Phys. Rev. Lett. 97(18), 186102 (2006) L. Hornekær, E. Rauls, W. Xu, Z. Sljivancanin, R. Otero, I. Stensgaard et al., Clustering of chemisorbed H(D) atoms on the graphite (0001) surface due to preferential sticking. Phys. Rev. Lett. 97(18), 186102 (2006)
41.
go back to reference B.N. Khare, M. Meyyappan, A.M. Cassell et al., Functionalization of carbon nanotubes using atomic hydrogen from a glow discharge. Nano Lett. 2(1), 73–77 (2002)ADSCrossRef B.N. Khare, M. Meyyappan, A.M. Cassell et al., Functionalization of carbon nanotubes using atomic hydrogen from a glow discharge. Nano Lett. 2(1), 73–77 (2002)ADSCrossRef
42.
go back to reference G. Chiarello, E. Maccallini, R.G. Agostino, T. Caruso, V. Formoso et al., Vibrational and electronic properties of hydrogen adsorbed on single-wall carbon nanotubes. Phys. Rev. B. 69(15), 153409 (2004)ADSCrossRef G. Chiarello, E. Maccallini, R.G. Agostino, T. Caruso, V. Formoso et al., Vibrational and electronic properties of hydrogen adsorbed on single-wall carbon nanotubes. Phys. Rev. B. 69(15), 153409 (2004)ADSCrossRef
44.
go back to reference O. Wessely, M.I. Katsnelson, A. Nilsson et al., Dynamical core-hole screening in the x-ray absorption spectra of hydrogenated carbon nanotubes and grapheme. Phys. Rev. B. 76(16), 161402 (2007)ADSCrossRef O. Wessely, M.I. Katsnelson, A. Nilsson et al., Dynamical core-hole screening in the x-ray absorption spectra of hydrogenated carbon nanotubes and grapheme. Phys. Rev. B. 76(16), 161402 (2007)ADSCrossRef
45.
go back to reference G. Zhang, P. Qi, X. Wang et al., Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. J. Am. Chem. Soc. 128(18), 6026–6027 (2006)CrossRef G. Zhang, P. Qi, X. Wang et al., Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. J. Am. Chem. Soc. 128(18), 6026–6027 (2006)CrossRef
46.
go back to reference S. Pekker, J.-P. Salvetat, E. Jakab et al., Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B. 105(33), 7938–7943 (2001) S. Pekker, J.-P. Salvetat, E. Jakab et al., Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B. 105(33), 7938–7943 (2001)
48.
go back to reference A.C. Dillon, T. Gennett, J.L. Alleman et al., Optimization of single-wall nanotube synthesis for hydrogen storage. IEA Task 12: Metal Hydrides and Carbon for Hydrogen Storage. NREL/CH-590-31288, pp. 91—95 (2001) A.C. Dillon, T. Gennett, J.L. Alleman et al., Optimization of single-wall nanotube synthesis for hydrogen storage. IEA Task 12: Metal Hydrides and Carbon for Hydrogen Storage. NREL/CH-590-31288, pp. 91—95 (2001)
49.
go back to reference Y. Ye, C. Ahn, C. Witham et al., Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74, 2307 (1999)ADSCrossRef Y. Ye, C. Ahn, C. Witham et al., Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 74, 2307 (1999)ADSCrossRef
50.
go back to reference M. Yudasaka, Single-wall carbon nanotubes and single-wall carbon nanohorns. in Perspectives of Fullerene Nanotechnology, ed. by E. Osawa (Kluwer Akademic Publisher, USA, 2002), pp. 125–129; T. Yildirim, O. Gülseren, S. Ciraci, Exohydrogenated single-wall carbon nanotubes. Phys. Rev. B. 64(7), 075404 (2001) M. Yudasaka, Single-wall carbon nanotubes and single-wall carbon nanohorns. in Perspectives of Fullerene Nanotechnology, ed. by E. Osawa (Kluwer Akademic Publisher, USA, 2002), pp. 125–129; T. Yildirim, O. Gülseren, S. Ciraci, Exohydrogenated single-wall carbon nanotubes. Phys. Rev. B. 64(7), 075404 (2001)
51.
go back to reference A.A. Bogdanov, On the limits of physical adsorption of hydrogen in carbon materials. Tech. Phys. 75(9), 139 (2005) A.A. Bogdanov, On the limits of physical adsorption of hydrogen in carbon materials. Tech. Phys. 75(9), 139 (2005)
52.
go back to reference S.D. Bondarenko, I.A. Alekseev, Study of isotopic effect for hydrogen and deuterium adsorption on nanoporous carbon. Hydrogen Mater. Sci. Chem. Carbon Nanomater. 3, 493–497 (2006) S.D. Bondarenko, I.A. Alekseev, Study of isotopic effect for hydrogen and deuterium adsorption on nanoporous carbon. Hydrogen Mater. Sci. Chem. Carbon Nanomater. 3, 493–497 (2006)
54.
go back to reference S.M. Lee, K.H. An, Y.H. Lee, G. Seifert, T. Frauenheim, A hydrogen storage mechanism in singlewalled carbon nanotubes. J. Am. Chem. Soc. 123(21), 5059–5063 (2001)CrossRef S.M. Lee, K.H. An, Y.H. Lee, G. Seifert, T. Frauenheim, A hydrogen storage mechanism in singlewalled carbon nanotubes. J. Am. Chem. Soc. 123(21), 5059–5063 (2001)CrossRef
55.
go back to reference Y. Ferro, F. Marinelli, A. Allouche, Density functional theory investigation of the diffusion and recombination of H on a graphite surface. Chem. Phys. Lett. 368(5–6), 609–615 (2003)ADSCrossRef Y. Ferro, F. Marinelli, A. Allouche, Density functional theory investigation of the diffusion and recombination of H on a graphite surface. Chem. Phys. Lett. 368(5–6), 609–615 (2003)ADSCrossRef
56.
go back to reference A.S. Barnard, M.L. Terranova, M. Rossi, Density functional theory of H-induced defects as nucleation sites in hybrid carbon nanomaterials. Chem. Mater. 17(3), 527–535 (2005)CrossRef A.S. Barnard, M.L. Terranova, M. Rossi, Density functional theory of H-induced defects as nucleation sites in hybrid carbon nanomaterials. Chem. Mater. 17(3), 527–535 (2005)CrossRef
57.
go back to reference G.U. Sumanesekera, C.K.W. Adu, S. Fang, P.C. Eklund, Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes. Phys. Rev. Lett. 85(5), 1096–1099 (2000)ADSCrossRef G.U. Sumanesekera, C.K.W. Adu, S. Fang, P.C. Eklund, Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes. Phys. Rev. Lett. 85(5), 1096–1099 (2000)ADSCrossRef
58.
go back to reference G. Buchs, A.V. Krasheninnikov, P. Ruffieux et al., Creation of paired electron states in the gap of semiconducting carbon nanotubes by correlated hydrogen adsorption. New J. Phys. 9(8), 275 (2007)ADSCrossRef G. Buchs, A.V. Krasheninnikov, P. Ruffieux et al., Creation of paired electron states in the gap of semiconducting carbon nanotubes by correlated hydrogen adsorption. New J. Phys. 9(8), 275 (2007)ADSCrossRef
59.
go back to reference W.L. Yim, T. Klüner. H2 carrying capacity by considering charging and discharging processes—Case Studies on Small Carbon—and Boron Nitride Nanotubes. High Performance Computing in Science and Engineering (Springer, Berlin, 2010), pp. 85–109 W.L. Yim, T. Klüner. H2 carrying capacity by considering charging and discharging processes—Case Studies on Small Carbon—and Boron Nitride Nanotubes. High Performance Computing in Science and Engineering (Springer, Berlin, 2010), pp. 85–109
60.
go back to reference M.C. Gordillo, J. Boronat, J. Casulleras, Isotopic effects of hydrogen adsorption in carbon nanotubes. Phys. Rev. B. 65(1), 014503 (2001) M.C. Gordillo, J. Boronat, J. Casulleras, Isotopic effects of hydrogen adsorption in carbon nanotubes. Phys. Rev. B. 65(1), 014503 (2001)
61.
go back to reference K.A. Williams, P.C. Eklund, Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes. Chem. Phys. Lett. 320, 352 (2000)ADSCrossRef K.A. Williams, P.C. Eklund, Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes. Chem. Phys. Lett. 320, 352 (2000)ADSCrossRef
62.
go back to reference S. Hammes-Schiffer, J.C. Tully, Proton transfer in solution: Molecular dynamics with quantum transitions. J. Chem. Phys. 101, 4657 (1994)ADSCrossRef S. Hammes-Schiffer, J.C. Tully, Proton transfer in solution: Molecular dynamics with quantum transitions. J. Chem. Phys. 101, 4657 (1994)ADSCrossRef
63.
go back to reference J.C. Tully, Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061 (1990)ADSCrossRef J.C. Tully, Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061 (1990)ADSCrossRef
64.
go back to reference A.S. Fedorov, S.G. Ovchinikov, Density and thermodynamics of hydrogen adsorbed inside narrow CNTs. Phys. Solid State 46(3), 563 (2004) A.S. Fedorov, S.G. Ovchinikov, Density and thermodynamics of hydrogen adsorbed inside narrow CNTs. Phys. Solid State 46(3), 563 (2004)
65.
go back to reference M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107(13), 3902–3909 (1985)CrossRef M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107(13), 3902–3909 (1985)CrossRef
66.
go back to reference B.C. Wanga, H.W. Wanga, I.C. Lina et al., A semiempirical study of carbon nanotubes with finite tubular length and various tubular diameters. J. Chin. Chem. Soc. 50, 939—945 (2003) B.C. Wanga, H.W. Wanga, I.C. Lina et al., A semiempirical study of carbon nanotubes with finite tubular length and various tubular diameters. J. Chin. Chem. Soc. 50, 939—945 (2003)
67.
go back to reference D. Lu, Y. Li, S.V. Rotkin, U. Ravaioli, K. Schulten, Finite-size effect and wall polarization in a carbon nanotube channel. Nano Lett. 4(12), 2383–2387 (2004)ADSCrossRef D. Lu, Y. Li, S.V. Rotkin, U. Ravaioli, K. Schulten, Finite-size effect and wall polarization in a carbon nanotube channel. Nano Lett. 4(12), 2383–2387 (2004)ADSCrossRef
68.
go back to reference A.C. Dillon, K.E.H. Gilbert, P.A. Parilla, C. Horbacewicz, J.L. Alleman, K.M. Jones, M.J. Heben, Hydrogen storage in carbon single-wall nanotubes. Hydrogen, Fuel Cells, and Infrastructure Technologies, FY 2003 Progress Report (2003) A.C. Dillon, K.E.H. Gilbert, P.A. Parilla, C. Horbacewicz, J.L. Alleman, K.M. Jones, M.J. Heben, Hydrogen storage in carbon single-wall nanotubes. Hydrogen, Fuel Cells, and Infrastructure Technologies, FY 2003 Progress Report (2003)
69.
go back to reference P. Ruffieux, O. Groning, M. Bielmann, P. Groning, Hydrogen chemisorption on sp2-bonded carbon: Influence of the local curvature and local electronic effects. Appl. Phys. A 78(7), 975–980 (2004)ADSCrossRef P. Ruffieux, O. Groning, M. Bielmann, P. Groning, Hydrogen chemisorption on sp2-bonded carbon: Influence of the local curvature and local electronic effects. Appl. Phys. A 78(7), 975–980 (2004)ADSCrossRef
70.
go back to reference E. Durgun, S. Dag, S. Ciraci, O. Gülseren, Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes. J. Phys. Chem. B. 108(2), 575–582 (2004)CrossRef E. Durgun, S. Dag, S. Ciraci, O. Gülseren, Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes. J. Phys. Chem. B. 108(2), 575–582 (2004)CrossRef
71.
go back to reference O. Gulseren, T. Yildirim, S. Ciraci, Tunable adsorption on carbon nanotubes. Phys. Rev. Lett. 87(1), 116802 (2011)ADS O. Gulseren, T. Yildirim, S. Ciraci, Tunable adsorption on carbon nanotubes. Phys. Rev. Lett. 87(1), 116802 (2011)ADS
72.
go back to reference A.N. Andriotis, M. Menon, D. Srivastava, G. Froudakis, Extreme hydrogen sensitivity of the transport properties of single-wall carbon-nanotube capsules. Phys. Rev. B. 64(19), 193401 (2001)ADSCrossRef A.N. Andriotis, M. Menon, D. Srivastava, G. Froudakis, Extreme hydrogen sensitivity of the transport properties of single-wall carbon-nanotube capsules. Phys. Rev. B. 64(19), 193401 (2001)ADSCrossRef
73.
go back to reference H. Scudder, G. Lu, N. Kioussis, Hydrogen-induced unzipping of single-walled carbon nanotubes. Phys. Rev. B. 68(20), 205416 (2003)ADSCrossRef H. Scudder, G. Lu, N. Kioussis, Hydrogen-induced unzipping of single-walled carbon nanotubes. Phys. Rev. B. 68(20), 205416 (2003)ADSCrossRef
74.
go back to reference S. Letardi, M. Celino, F. Cleri, V. Rosato, Atomic hydrogen adsorption on a Stone-Wales defect in graphite. Surf. Sci. 496(1–2), 22–38 (2002) S. Letardi, M. Celino, F. Cleri, V. Rosato, Atomic hydrogen adsorption on a Stone-Wales defect in graphite. Surf. Sci. 496(1–2), 22–38 (2002)
75.
go back to reference C. Tabtimsai, S. Keawwangchai, N. Nunthaboot, V. Ruangpornvisuti, B. Wanno, Density functional investigation of hydrogen gas adsorption on Fedoped pristine and Stone–Wales defected single-walled carbon nanotubes. J. Mol. Model. 18(8), 3941–3949 (2012)CrossRef C. Tabtimsai, S. Keawwangchai, N. Nunthaboot, V. Ruangpornvisuti, B. Wanno, Density functional investigation of hydrogen gas adsorption on Fedoped pristine and Stone–Wales defected single-walled carbon nanotubes. J. Mol. Model. 18(8), 3941–3949 (2012)CrossRef
76.
go back to reference O. Wessely, M.I. Katsnelson, A. Nilsson et al., Dynamical core-hole screening in the x-ray absorption spectra of hydrogenated carbon nanotubes and grapheme. Phys. Rev. B. 76(16), 161402 (2007)ADSCrossRef O. Wessely, M.I. Katsnelson, A. Nilsson et al., Dynamical core-hole screening in the x-ray absorption spectra of hydrogenated carbon nanotubes and grapheme. Phys. Rev. B. 76(16), 161402 (2007)ADSCrossRef
77.
go back to reference G. Zhang, P. Qi, X. Wang et al., Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. J. Am. Chem. Soc. 128(18), 6026–6027 (2006)CrossRef G. Zhang, P. Qi, X. Wang et al., Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. J. Am. Chem. Soc. 128(18), 6026–6027 (2006)CrossRef
78.
go back to reference S. Pekker, J.-P. Salvetat, E. Jakab et al., Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B. 105(33), 7938–7943 (2001)CrossRef S. Pekker, J.-P. Salvetat, E. Jakab et al., Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J. Phys. Chem. B. 105(33), 7938–7943 (2001)CrossRef
79.
go back to reference R.E. Haufler, J. Conceicao, L.P.F. Chibante et al., Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion. J. Phys. Chem. 94(24), 8634–8636 (1990)CrossRef R.E. Haufler, J. Conceicao, L.P.F. Chibante et al., Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion. J. Phys. Chem. 94(24), 8634–8636 (1990)CrossRef
80.
go back to reference G. Lu, H. Scudder, N. Kioussis, Hydrogen-induced unzipping of single-walled carbon nanotubes. Phys. Rev. B. 68(20), 205416 (2003)ADSCrossRef G. Lu, H. Scudder, N. Kioussis, Hydrogen-induced unzipping of single-walled carbon nanotubes. Phys. Rev. B. 68(20), 205416 (2003)ADSCrossRef
81.
go back to reference K.A. Park, S.J. Kim, K. Seo, Y.H. Lee, Adsorption of atomic hydrogen on single-walled carbon nanotubes. J. Phys. Chem. B. 109(18), 8967–8972 (2005)CrossRef K.A. Park, S.J. Kim, K. Seo, Y.H. Lee, Adsorption of atomic hydrogen on single-walled carbon nanotubes. J. Phys. Chem. B. 109(18), 8967–8972 (2005)CrossRef
82.
go back to reference C.W. Bauschlicher Jr., Hydrogen and fluorine binding to the sidewalls of a (10, 0) carbon nanotube. Chem. Phys. Lett. 322(3–4), 237–241 (2000) C.W. Bauschlicher Jr., Hydrogen and fluorine binding to the sidewalls of a (10, 0) carbon nanotube. Chem. Phys. Lett. 322(3–4), 237–241 (2000)
83.
go back to reference S. Jalili, R. Majidi, The effect of atomic hydrogen adsorption on single-walled carbon nanotubes properties. J. Iran. Chem. Soc. 4(4), 431–437 (2007)CrossRef S. Jalili, R. Majidi, The effect of atomic hydrogen adsorption on single-walled carbon nanotubes properties. J. Iran. Chem. Soc. 4(4), 431–437 (2007)CrossRef
84.
go back to reference P. Nikolaev, A. Thess, A.G. Rinzler, D.T. Colbert, R. Smalley, Diameter doubling of single-wall nanotubes. Chem. Phys. Lett. 266(5–6), 422–426 (1997)ADSCrossRef P. Nikolaev, A. Thess, A.G. Rinzler, D.T. Colbert, R. Smalley, Diameter doubling of single-wall nanotubes. Chem. Phys. Lett. 266(5–6), 422–426 (1997)ADSCrossRef
85.
go back to reference Б. Tpeпнeл, « Xeмocopбция » . M.: Инocтpaннaя лит., 1958. 327 c Б. Tpeпнeл, « Xeмocopбция » . M.: Инocтpaннaя лит., 1958. 327 c
86.
go back to reference Y.S. Nechaev, O chemosorbtchii i phyzicheskoy sorbtcii vodoroda uglerodnymi nanostructurami. Alternativnaya energetica i ecologya. 2(22), 64–73 (2005) Y.S. Nechaev, O chemosorbtchii i phyzicheskoy sorbtcii vodoroda uglerodnymi nanostructurami. Alternativnaya energetica i ecologya. 2(22), 64–73 (2005)
87.
go back to reference O.B. Tomilin, U.U. Murumin, Adsorption on the graphene surface of carbon nanotubes and their energy spectrum. Phys. Solid State 48(3), 563–571 (2006)CrossRef O.B. Tomilin, U.U. Murumin, Adsorption on the graphene surface of carbon nanotubes and their energy spectrum. Phys. Solid State 48(3), 563–571 (2006)CrossRef
88.
go back to reference O.B. Tomilin, P.V. Avramov, A.A. Kuzovov, S.G. Ovchinikov, G.L.Pashkov, Connection the chemical properties of carbon nanotubes with their atomic and electronic structure. Phys. Solid State 46(6), 1143–1146 (2004) O.B. Tomilin, P.V. Avramov, A.A. Kuzovov, S.G. Ovchinikov, G.L.Pashkov, Connection the chemical properties of carbon nanotubes with their atomic and electronic structure. Phys. Solid State 46(6), 1143–1146 (2004)
89.
go back to reference A. Yu, Zarifayntc. J. Phys. Chem. 38, 2655–2664 (1964) A. Yu, Zarifayntc. J. Phys. Chem. 38, 2655–2664 (1964)
90.
go back to reference V.F. Кisilev, O.V. Кrylov, Adsorption processes on the surface of semiconductors and dielectrics. Moscov. Sience, 255 (1978) (Rus.) V.F. Кisilev, O.V. Кrylov, Adsorption processes on the surface of semiconductors and dielectrics. Moscov. Sience, 255 (1978) (Rus.)
91.
go back to reference A.P. Popov, Bazhin influence of impurities and defects on electronic structure of carbon nanotubes. Hydrogen Mater. Sci. Chem. Carbon Nanomater., 795–799 (2007) A.P. Popov, Bazhin influence of impurities and defects on electronic structure of carbon nanotubes. Hydrogen Mater. Sci. Chem. Carbon Nanomater., 795–799 (2007)
92.
go back to reference Y.S. Nechaev, O chemosorbtchii i phyzicheskoy sorbtcii vodoroda uglerodnymi nanostructurami. Alternativnaya energetica i ecologya. 2(22), 64–73 (2005) Y.S. Nechaev, O chemosorbtchii i phyzicheskoy sorbtcii vodoroda uglerodnymi nanostructurami. Alternativnaya energetica i ecologya. 2(22), 64–73 (2005)
93.
go back to reference P. Ruffieux, O. Groning, M. Bielman, P. Groning, Hydrogen chemisorption on sp2-bonded carbon: influence of the local curvature and local electronic effects. Appl. Phys. A 78, 975–980 (2004)ADSCrossRef P. Ruffieux, O. Groning, M. Bielman, P. Groning, Hydrogen chemisorption on sp2-bonded carbon: influence of the local curvature and local electronic effects. Appl. Phys. A 78, 975–980 (2004)ADSCrossRef
94.
go back to reference L. Sabir, W. Lu, C. Roland, J. Bernholc, Ab initio simulations of H2 in Li-doped carbon nanotube system. arXiv: cond-mat/ 0608432v1. 18 Aug. 2006 L. Sabir, W. Lu, C. Roland, J. Bernholc, Ab initio simulations of H2 in Li-doped carbon nanotube system. arXiv: cond-mat/ 0608432v1. 18 Aug. 2006
95.
go back to reference Y. Zhao, Y.H. Kim, A.C. Dillon, M.J. Heben, S.B. Zhang, Hydrogen storage in novel organometallic buckyballs. Phys. Rev. Lett. 94(15), 155504 (2005) Y. Zhao, Y.H. Kim, A.C. Dillon, M.J. Heben, S.B. Zhang, Hydrogen storage in novel organometallic buckyballs. Phys. Rev. Lett. 94(15), 155504 (2005)
96.
go back to reference T. Yildirim, S. Ciraci, Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys. Rev. Lett. 94(17), 175501 (2005) T. Yildirim, S. Ciraci, Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys. Rev. Lett. 94(17), 175501 (2005)
97.
go back to reference S.V. Bulyarskiy, V.V. Fistul, The thermodynamics and kinetics of the interaction of defects in semiconductors. Moscov. Sience, 351 (1997) (Rus.) S.V. Bulyarskiy, V.V. Fistul, The thermodynamics and kinetics of the interaction of defects in semiconductors. Moscov. Sience, 351 (1997) (Rus.)
98.
go back to reference S.V. Bulyarskiy, V.V. Svetuhin, Physical basis of defect management in semiconductors. Ulianovsk 385 (2003) (Rus.) S.V. Bulyarskiy, V.V. Svetuhin, Physical basis of defect management in semiconductors. Ulianovsk 385 (2003) (Rus.)
99.
go back to reference A. Nikitin, H. Ogasawara, D. Mann, R. Denecke, Z. Zhang et al., Hydrogenation of single-walled carbon nanotubes. Phys. Rev. Lett. 95, 225507 (2005)ADSCrossRef A. Nikitin, H. Ogasawara, D. Mann, R. Denecke, Z. Zhang et al., Hydrogenation of single-walled carbon nanotubes. Phys. Rev. Lett. 95, 225507 (2005)ADSCrossRef
101.
go back to reference A. Rochefort, D.R. Salahub, P. Avouris, The effects of finite length on the electronic structure of carbon nanotubes. J. Phys. Chem. B. 103(4), 641–646 (1999)CrossRef A. Rochefort, D.R. Salahub, P. Avouris, The effects of finite length on the electronic structure of carbon nanotubes. J. Phys. Chem. B. 103(4), 641–646 (1999)CrossRef
102.
go back to reference I. Cabria, M.J. Lopez, J.A. Alonso, Adsorption of hydrogen on normal and pentaheptite single wall carbon nanotubes. Eur. Phys. J. 34, 279—282 (2005) I. Cabria, M.J. Lopez, J.A. Alonso, Adsorption of hydrogen on normal and pentaheptite single wall carbon nanotubes. Eur. Phys. J. 34, 279—282 (2005)
Metadata
Title
Interaction of Hydrogen with a Graphene Plane of Carbon Nanotubes and Graphene
Authors
Sergey Bulyarskiy
Alexandr S. Basaev
Darya A. Bogdanova
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-55883-7_3

Premium Partners