Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 11/2012

01-11-2012

Interdiffusion in the Mg-Al System and Intrinsic Diffusion in β-Mg2Al3

Authors: Sarah Brennan, Katrina Bermudez, Nagraj S. Kulkarni, Yongho Sohn

Published in: Metallurgical and Materials Transactions A | Issue 11/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solid-to-solid diffusion couples were assembled and annealed to examine the diffusion between pure Mg (99.96 pct) and Al (99.999 pct). Diffusion anneals were carried out at 573 K, 623 K and 673 K (300 °C, 350 °C and 400 °C) for 720, 360, and 240 hours, respectively. Optical and scanning electron microscopes were used to identify the formation of the intermetallic phases, γ-Mg17Al12, and β-Mg2Al3, as well as the absence of the ε-Mg23Al30 in the diffusion couples. The thicknesses of the γ-Mg17Al12 and β-Mg2Al3 phases were measured and the parabolic growth constants were calculated to determine the activation energies for growth. Concentration profiles were determined with electron microprobe analysis using pure elemental standards. Composition-dependent interdiffusion coefficients in Mg-solid solution, γ-Mg17Al12, β-Mg2Al3, and Al-solid solutions were calculated based on the Boltzmann-Matano analysis. Integrated and average effective interdiffusion coefficients for each phase were also calculated, and the magnitude was the highest for the β-Mg2Al3 phase, followed by γ-Mg17Al12, Al-solid solution, and Mg-solid solution. Intrinsic diffusion coefficients based on Huemann’s analysis (e.g., marker plane) were determined for the ~ Mg-62 at. pct Al in the β-Mg2Al3 phase. Activation energies and the pre-exponential factors for the interdiffusion and intrinsic diffusion coefficients were calculated for the temperature range examined. The β-Mg2Al3 phase was found to have the lowest activation energies for growth and interdiffusion among all four phases studied. At the marker location in the β-Mg2Al3 phase, the intrinsic diffusion of Al was found to be faster than that of Mg. Extrapolations of the impurity diffusion coefficients in the terminal solid solutions were made and compared with the available self-diffusion and impurity diffusion data from the literature. Thermodynamic factor, tracer diffusion coefficients, and atomic mobilities at the marker plane composition were approximated using the available literature values of Mg activity in the β-Mg2Al3 phase.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37–45.CrossRef B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37–45.CrossRef
3.
4.
go back to reference R. Urbance, F. Field, R. Kirchain, R. Roth, and J. Clark: JOM, 2002, vol. 54, pp. 25–33.CrossRef R. Urbance, F. Field, R. Kirchain, R. Roth, and J. Clark: JOM, 2002, vol. 54, pp. 25–33.CrossRef
5.
go back to reference A.K. Mondal, D. Fechner, S. Kumar, H. Dieringa, P. Maier, and K.U. Kainer: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2289–96.CrossRef A.K. Mondal, D. Fechner, S. Kumar, H. Dieringa, P. Maier, and K.U. Kainer: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2289–96.CrossRef
6.
go back to reference H.Z. Ye and X.Y. Liu: J. Mater. Sci., 2004, vol. 39, pp. 61, pp. 53–71. H.Z. Ye and X.Y. Liu: J. Mater. Sci., 2004, vol. 39, pp. 61, pp. 53–71.
7.
go back to reference K. Cho, T. Sano, K. Doherty, C. Yen, G. Gazonas, J. Montgomery, P. Moy, B. Davis, and R. DeLorme: Proc. 2008 Army Science Conf., 2009. K. Cho, T. Sano, K. Doherty, C. Yen, G. Gazonas, J. Montgomery, P. Moy, B. Davis, and R. DeLorme: Proc. 2008 Army Science Conf., 2009.
8.
go back to reference S.I. Fujikawa: J. Jpn. Inst. Light Met., 1992, vol. 42, no. 12, pp. 822–25.CrossRef S.I. Fujikawa: J. Jpn. Inst. Light Met., 1992, vol. 42, no. 12, pp. 822–25.CrossRef
9.
go back to reference Y. Xu, L.S. Chumbley, G.A. Weigelt, and F.C. Laabs: J. Mater. Res., 2001, vol. 16, no. 11, pp. 3287–92.CrossRef Y. Xu, L.S. Chumbley, G.A. Weigelt, and F.C. Laabs: J. Mater. Res., 2001, vol. 16, no. 11, pp. 3287–92.CrossRef
10.
go back to reference X. Zhang, D. Kevorkov, and M.O. Pekguleryuz: J. Alloys Compd., 2010, vol. 501, pp. 366–70.CrossRef X. Zhang, D. Kevorkov, and M.O. Pekguleryuz: J. Alloys Compd., 2010, vol. 501, pp. 366–70.CrossRef
11.
go back to reference Y. Funamizu and K. Watanabe: Trans. Jpn. Inst. Met., 1972, vol. 13, pp. 278–83. Y. Funamizu and K. Watanabe: Trans. Jpn. Inst. Met., 1972, vol. 13, pp. 278–83.
12.
go back to reference T. Heumann and A. Kottmann: Z. Metallkd., 1953, vol. 44, p. 139. T. Heumann and A. Kottmann: Z. Metallkd., 1953, vol. 44, p. 139.
13.
go back to reference E.M. Tanguep Njiokep, M. Salomon, and H. Mehrer: Defect Diffusion Forum, 2001, vols. 194–199, pp. 1581–86. E.M. Tanguep Njiokep, M. Salomon, and H. Mehrer: Defect Diffusion Forum, 2001, vols. 194–199, pp. 1581–86.
14.
go back to reference Y. Zhong, M. Yang, and Z.K. Liu: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2005, vol. 29, pp. 303–11.CrossRef Y. Zhong, M. Yang, and Z.K. Liu: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2005, vol. 29, pp. 303–11.CrossRef
15.
go back to reference J. Philibert: Atom Movements Diffusion and Mass Transport in Solid, Les Editions de Physique, France, 1991, pp. 227–29. J. Philibert: Atom Movements Diffusion and Mass Transport in Solid, Les Editions de Physique, France, 1991, pp. 227–29.
16.
go back to reference L. Boltzmann: Wein. Ann., 1894, vol. 53, pp. 959–64. L. Boltzmann: Wein. Ann., 1894, vol. 53, pp. 959–64.
17.
go back to reference C. Matano: Jpn. J. Phys., 1933, vol. 8, pp. 109–13. C. Matano: Jpn. J. Phys., 1933, vol. 8, pp. 109–13.
18.
go back to reference M.A. Dayananda and C.W. Kim: Metall. Trans. A, 1979, vol. 10A, pp. 1333–39. M.A. Dayananda and C.W. Kim: Metall. Trans. A, 1979, vol. 10A, pp. 1333–39.
19.
go back to reference M.A. Dayananda: Defect Diffus. Forum, 1993, vols. 95–98, pp. 521–36. M.A. Dayananda: Defect Diffus. Forum, 1993, vols. 95–98, pp. 521–36.
20.
go back to reference T. Heumann: Z. Phys. Chemie, 1952, vol. 201, pp. 168–89. T. Heumann: Z. Phys. Chemie, 1952, vol. 201, pp. 168–89.
22.
go back to reference C. Brubaker and Z.K. Liu: Mg. Tech., 2004, pp. 229–34. C. Brubaker and Z.K. Liu: Mg. Tech., 2004, pp. 229–34.
24.
25.
go back to reference M. Kajihara: Acta. Metall., 2004, vol. 52, pp. 1193–1200. M. Kajihara: Acta. Metall., 2004, vol. 52, pp. 1193–1200.
26.
go back to reference R. Pretorius, T.K. Marais, and C.C. Theron: Mater. Sci. Rep., 1993, vol. 10, pp. 1–83.CrossRef R. Pretorius, T.K. Marais, and C.C. Theron: Mater. Sci. Rep., 1993, vol. 10, pp. 1–83.CrossRef
27.
go back to reference A. Paul, A.A. Kodentsov, and F.J.J. van Loo: Intermetallics, 2006, vol. 14, pp. 1428–32. A. Paul, A.A. Kodentsov, and F.J.J. van Loo: Intermetallics, 2006, vol. 14, pp. 1428–32.
29.
go back to reference V.I. Dybkov: Reaction Diffusion and Solid State Chemical Kinetics, Trans Tech Publications, Stafa-Zurich, Switzerland, 2002. V.I. Dybkov: Reaction Diffusion and Solid State Chemical Kinetics, Trans Tech Publications, Stafa-Zurich, Switzerland, 2002.
30.
31.
32.
go back to reference P.G. Shewmon: Trans. AIME, 1956, vol. 206, pp. 918–39. P.G. Shewmon: Trans. AIME, 1956, vol. 206, pp. 918–39.
33.
go back to reference P.G. Shewmon and F.N. Rhines: Trans. AIME, 1954, vol. 250, pp. 1021–26. P.G. Shewmon and F.N. Rhines: Trans. AIME, 1954, vol. 250, pp. 1021–26.
34.
35.
go back to reference S. Brennan, A.P. Warren, K.R. Coffey, Y.H. Sohn, N. Kulkarni, and P. Todd: Mg. Tech., 2010, pp. 537–38. S. Brennan, A.P. Warren, K.R. Coffey, Y.H. Sohn, N. Kulkarni, and P. Todd: Mg. Tech., 2010, pp. 537–38.
36.
go back to reference J.A. Brown and J.N. Pratt: Metall. Trans., 1970, vol. 1, pp. 2743–50. J.A. Brown and J.N. Pratt: Metall. Trans., 1970, vol. 1, pp. 2743–50.
37.
go back to reference L.S. Darken: Trans. AIME, 1948, vol. 175, pp. 184–201. L.S. Darken: Trans. AIME, 1948, vol. 175, pp. 184–201.
Metadata
Title
Interdiffusion in the Mg-Al System and Intrinsic Diffusion in β-Mg2Al3
Authors
Sarah Brennan
Katrina Bermudez
Nagraj S. Kulkarni
Yongho Sohn
Publication date
01-11-2012
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 11/2012
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-012-1248-8

Other articles of this Issue 11/2012

Metallurgical and Materials Transactions A 11/2012 Go to the issue

Premium Partners