Skip to main content
Top

2018 | OriginalPaper | Chapter

Internal Undular Bores in the Coastal Ocean

Authors : Roger Grimshaw, Chunxin Yuan

Published in: The Ocean in Motion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the coastal ocean, large amplitude, horizontally propagating internal wave trains are commonly observed. These are long nonlinear waves and are often modelled by equations of the Korteweg-de Vries type, such as the variable-coefficient Korteweg-de Vries equation when the background topography varies as the waves propagate shoreward. Most emphasis has been placed on the solitary wave solutions of these model equations, whereas in reality, wave trains are more usually observed. In this review article we examine the undular bore asymptotic representation of wave trains in the framework of the variable-coefficient Korteweg-de Vries equation, placing a special emphasis on the front of the undular bore which can be represented by a simplified model as a solitary wave train. We consider applications for both propagation shorewards whenw nonlinearity increases, and for cases when the wave train passes through a critical point of polarity change, when the nonlinear coefficient in the Korteweg-de Vries equation changes sign.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Ablowitz, M. J., & Segur, H. (1981). Solitons and the inverse scattering transform. Philadelphia: SIAM. Ablowitz, M. J., & Segur, H. (1981). Solitons and the inverse scattering transform. Philadelphia: SIAM.
2.
go back to reference Benjamin, T. B. (1966). Internal waves of finite amplitude and permanent form. Journal of Fluid Mechanics, 25, 241–270.CrossRef Benjamin, T. B. (1966). Internal waves of finite amplitude and permanent form. Journal of Fluid Mechanics, 25, 241–270.CrossRef
3.
go back to reference Benney, D. J. (1966). Long non-linear waves in fluid flows. Journal of Mathematical Physics, 45, 52–63.CrossRef Benney, D. J. (1966). Long non-linear waves in fluid flows. Journal of Mathematical Physics, 45, 52–63.CrossRef
4.
go back to reference El, G. (2007). Kortweg-de Vries equation and undular bores. In R. Grimshaw (Ed.), Solitary waves in fluids. Advances in Fluid Mechanics (Vol. 47, pp. 19–53). WIT Press. El, G. (2007). Kortweg-de Vries equation and undular bores. In R. Grimshaw (Ed.), Solitary waves in fluids. Advances in Fluid Mechanics (Vol. 47, pp. 19–53). WIT Press.
5.
go back to reference El, G. A., Grimshaw, R. H. J., & Tiong, W. K. (2012). Transformation of a shoaling undular bore. Journal of Fluid Mechanics, 709, 371–395. El, G. A., Grimshaw, R. H. J., & Tiong, W. K. (2012). Transformation of a shoaling undular bore. Journal of Fluid Mechanics, 709, 371–395.
6.
go back to reference Fornberg, B., & Whitham, G. B. (1978). A numerical and theoretical study of certain nonlinear wave phenomena. Philosophical Transactions of the Royal Society A, 289, 373–404.CrossRef Fornberg, B., & Whitham, G. B. (1978). A numerical and theoretical study of certain nonlinear wave phenomena. Philosophical Transactions of the Royal Society A, 289, 373–404.CrossRef
7.
go back to reference Grimshaw, R. (1979). Slowly varying solitary waves. I. Korteweg-de Vries equation. Proceedings of the Royal Society, 368A, 359–375.CrossRef Grimshaw, R. (1979). Slowly varying solitary waves. I. Korteweg-de Vries equation. Proceedings of the Royal Society, 368A, 359–375.CrossRef
8.
go back to reference Grimshaw, R. (1981). Evolution equations for long nonlinear internal waves in stratified shear flows. Studies in Applied Mathematics, 65, 159–188.CrossRef Grimshaw, R. (1981). Evolution equations for long nonlinear internal waves in stratified shear flows. Studies in Applied Mathematics, 65, 159–188.CrossRef
9.
go back to reference Grimshaw, R. (2001). Internal solitary waves. In R. Grimshaw (Ed.), Environmental stratified flows (pp. 1–27). Boston: Kluwer. Grimshaw, R. (2001). Internal solitary waves. In R. Grimshaw (Ed.), Environmental stratified flows (pp. 1–27). Boston: Kluwer.
10.
go back to reference Grimshaw, R. (2007). Internal solitary waves in a variable medium. Gesellschaft fur Angewandte Mathematik, 30, 96–109. Grimshaw, R. (2007). Internal solitary waves in a variable medium. Gesellschaft fur Angewandte Mathematik, 30, 96–109.
11.
go back to reference Grimshaw, R. (2010). Transcritical flow past an obstacle. ANZIAM Journal, 52, 1–25.CrossRef Grimshaw, R. (2010). Transcritical flow past an obstacle. ANZIAM Journal, 52, 1–25.CrossRef
12.
go back to reference Grimshaw, R. (2015). Change of polarity for periodic waves in the variable-coefficient Korteweg-de Vries equation. Studies in Applied Mathematics, 134, 363–371.CrossRef Grimshaw, R. (2015). Change of polarity for periodic waves in the variable-coefficient Korteweg-de Vries equation. Studies in Applied Mathematics, 134, 363–371.CrossRef
13.
go back to reference Grimshaw, R. H. J., & Smyth, N. F. (1986). Resonant flow of a stratified fluid over topography. Journal of Fluid Mechanics, 169, 429–464.CrossRef Grimshaw, R. H. J., & Smyth, N. F. (1986). Resonant flow of a stratified fluid over topography. Journal of Fluid Mechanics, 169, 429–464.CrossRef
14.
go back to reference Grimshaw, R., Pelinovsky, E., & Talipova, T. (2007). Modeling internal solitary waves in the coastal ocean. Surveys in Geophysics, 28, 273–298.CrossRef Grimshaw, R., Pelinovsky, E., & Talipova, T. (2007). Modeling internal solitary waves in the coastal ocean. Surveys in Geophysics, 28, 273–298.CrossRef
15.
go back to reference Grimshaw, R., Pelinovsky, E., Talipova, T., & Kurkina, A. (2010). Internal solitary waves: Propagation, deformation and disintegration. Nonlinear Processes in Geophysics, 17, 633–649.CrossRef Grimshaw, R., Pelinovsky, E., Talipova, T., & Kurkina, A. (2010). Internal solitary waves: Propagation, deformation and disintegration. Nonlinear Processes in Geophysics, 17, 633–649.CrossRef
16.
go back to reference Grimshaw, R., & Yuan, C. (2016). The propagation of internal undular bores over variable topography. Physica D, 333, 200–207.CrossRef Grimshaw, R., & Yuan, C. (2016). The propagation of internal undular bores over variable topography. Physica D, 333, 200–207.CrossRef
17.
go back to reference Grimshaw, R., & Yuan, C. (2016). Depression and elevation tsunami waves in the framework of the Korteweg-de Vries equation. Natural Hazards, 84, S493–S511.CrossRef Grimshaw, R., & Yuan, C. (2016). Depression and elevation tsunami waves in the framework of the Korteweg-de Vries equation. Natural Hazards, 84, S493–S511.CrossRef
18.
go back to reference Gurevich, A. V., & Pitaevskii, L. P. (1974). Nonstationary structure of a collisionless shock wave. Soviet Physics JETP, 38, 291–297. Gurevich, A. V., & Pitaevskii, L. P. (1974). Nonstationary structure of a collisionless shock wave. Soviet Physics JETP, 38, 291–297.
19.
go back to reference Helfrich, K. R., & Melville, W. K. (2006). Long nonlinear internal waves. Annual Review of Fluid Mechanics, 38, 395–425.CrossRef Helfrich, K. R., & Melville, W. K. (2006). Long nonlinear internal waves. Annual Review of Fluid Mechanics, 38, 395–425.CrossRef
20.
go back to reference Holloway, P., Pelinovsky, E., & Talipova, T. (2001). Internal tide transformation and oceanic internal solitary waves. In R. Grimshaw (Ed.), Environmental stratified flows (pp. 31–60). Boston: Kluwer. Holloway, P., Pelinovsky, E., & Talipova, T. (2001). Internal tide transformation and oceanic internal solitary waves. In R. Grimshaw (Ed.), Environmental stratified flows (pp. 31–60). Boston: Kluwer.
21.
go back to reference Kamchatnov, A. M. (2000). Nonlinear periodic waves and their modulations. An introductory course. World Scientific. Kamchatnov, A. M. (2000). Nonlinear periodic waves and their modulations. An introductory course. World Scientific.
22.
go back to reference Kamchatnov, A. M. (2004). On Whitham theory for perturbed integrable equations. Physica D, 188, 247–281.CrossRef Kamchatnov, A. M. (2004). On Whitham theory for perturbed integrable equations. Physica D, 188, 247–281.CrossRef
23.
go back to reference Liu, Z., Grimshaw, R., & Johnson, E. (2017). Internal solitary waves propagating through variable background hydrology and currents. Ocean Modelling. Liu, Z., Grimshaw, R., & Johnson, E. (2017). Internal solitary waves propagating through variable background hydrology and currents. Ocean Modelling.
24.
go back to reference Myint, S., & Grimshaw, R. (1995). The modulation of nonlinear periodic wavetrains by dissipative terms in the Korteweg-de Vries equation. Wave Motion, 22, 215–238.CrossRef Myint, S., & Grimshaw, R. (1995). The modulation of nonlinear periodic wavetrains by dissipative terms in the Korteweg-de Vries equation. Wave Motion, 22, 215–238.CrossRef
25.
go back to reference Ostrovsky, L. A., & Stepanyants, Y. A. (2005). Internal solitons in laboratory experiments: Comparison with theoretical models. Chaos, 28, 037111.CrossRef Ostrovsky, L. A., & Stepanyants, Y. A. (2005). Internal solitons in laboratory experiments: Comparison with theoretical models. Chaos, 28, 037111.CrossRef
26.
go back to reference Pelinovsky, E. N., Rayevsky, M. A., & Shavratsky, S. K. (1977). The Korteweg-de Vries equation for nonstationary internal waves in an inhomogeneous ocean. Izvestiya, Atmospheric and Oceanic Physics, 13, 226–228. Pelinovsky, E. N., Rayevsky, M. A., & Shavratsky, S. K. (1977). The Korteweg-de Vries equation for nonstationary internal waves in an inhomogeneous ocean. Izvestiya, Atmospheric and Oceanic Physics, 13, 226–228.
27.
go back to reference Vlasenko, V. I., Stashchuk, N. M., & Hutter, K. (2005). Baroclinic tides: Theoretical modelling and observational evidence. Cambridge University Press. Vlasenko, V. I., Stashchuk, N. M., & Hutter, K. (2005). Baroclinic tides: Theoretical modelling and observational evidence. Cambridge University Press.
28.
go back to reference Whitham, G. B. (1965). Nonlinear dispersive waves. Proceedings of the Royal Society of London A, 283, 238–261. Whitham, G. B. (1965). Nonlinear dispersive waves. Proceedings of the Royal Society of London A, 283, 238–261.
29.
go back to reference Whitham, G. B. (1974). Linear and nonlinear waves. Wiley. Whitham, G. B. (1974). Linear and nonlinear waves. Wiley.
30.
go back to reference Zhou, X., & Grimshaw, R. (1989). The effect of variable currents on internal solitary waves. Dynamics of Atmospheres and Oceans, 14, 17–39.CrossRef Zhou, X., & Grimshaw, R. (1989). The effect of variable currents on internal solitary waves. Dynamics of Atmospheres and Oceans, 14, 17–39.CrossRef
Metadata
Title
Internal Undular Bores in the Coastal Ocean
Authors
Roger Grimshaw
Chunxin Yuan
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-71934-4_5