Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Internal Waves and Tides in Stars and Giant Planets

Author : Gordon I. Ogilvie

Published in: Fluid Mechanics of Planets and Stars

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Internal waves play an important role in tidal dissipation in stars and giant planets. This chapter provides a pedagogical introduction to the study of astrophysical tides, with an emphasis on the contributions of inertial waves and internal gravity waves.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alvan, L., Brun, A. S., & Mathis, S. (2014). Theoretical seismology in 3D: Nonlinear simulations of internal gravity waves in solar-like stars. Astronomy & Astrophysics, 565, A42.CrossRef Alvan, L., Brun, A. S., & Mathis, S. (2014). Theoretical seismology in 3D: Nonlinear simulations of internal gravity waves in solar-like stars. Astronomy & Astrophysics, 565, A42.CrossRef
go back to reference Backus, G., & Rieutord, M. (2017). Completeness of inertial modes of an incompressible inviscid fluid in a corotating ellipsoid. Physical Review E, 95, 053116.CrossRef Backus, G., & Rieutord, M. (2017). Completeness of inertial modes of an incompressible inviscid fluid in a corotating ellipsoid. Physical Review E, 95, 053116.CrossRef
go back to reference Barker, A. J., & Ogilvie, G. I. (2010). On internal wave breaking and tidal dissipation near the centre of a solar-type star. Monthly Notices of the Royal Astronomical Society, 404, 1849–1868. Barker, A. J., & Ogilvie, G. I. (2010). On internal wave breaking and tidal dissipation near the centre of a solar-type star. Monthly Notices of the Royal Astronomical Society, 404, 1849–1868.
go back to reference Bryan, G. H. (1889). The waves on a rotating liquid spheroid of finite ellipticity. Philosophical Transactions of the Royal Society of London Series A, 180, 187–219.CrossRef Bryan, G. H. (1889). The waves on a rotating liquid spheroid of finite ellipticity. Philosophical Transactions of the Royal Society of London Series A, 180, 187–219.CrossRef
go back to reference Chandrasekhar, S. (1969). Ellipsoidal figures of equilibrium. New Haven: Yale University Press.MATH Chandrasekhar, S. (1969). Ellipsoidal figures of equilibrium. New Haven: Yale University Press.MATH
go back to reference Christensen-Dalsgaard, J., Dappen, W., Ajukov, S. V., et al. (1996). The current state of solar modeling. Science, 272, 1286–1292.CrossRef Christensen-Dalsgaard, J., Dappen, W., Ajukov, S. V., et al. (1996). The current state of solar modeling. Science, 272, 1286–1292.CrossRef
go back to reference Dauxois, T., Joubaud, S., Odier, P., & Venaille, A. (2018). Instabilities of internal gravity wave beams. Annual Review of Fluid Mechanics, 50, 131–156.MathSciNetCrossRef Dauxois, T., Joubaud, S., Odier, P., & Venaille, A. (2018). Instabilities of internal gravity wave beams. Annual Review of Fluid Mechanics, 50, 131–156.MathSciNetCrossRef
go back to reference Dintrans, B., & Rieutord, M. (2000). Oscillations of a rotating star: A non-perturbative theory. Astronomy & Astrophysics, 354, 86–98. Dintrans, B., & Rieutord, M. (2000). Oscillations of a rotating star: A non-perturbative theory. Astronomy & Astrophysics, 354, 86–98.
go back to reference Favier, B., Barker, A. J., Baruteau, C., & Ogilvie, G. I. (2014). Non-linear evolution of tidally forced inertial waves in rotating fluid bodies. Monthly Notices of the Royal Astronomical Society, 439, 845–860.CrossRef Favier, B., Barker, A. J., Baruteau, C., & Ogilvie, G. I. (2014). Non-linear evolution of tidally forced inertial waves in rotating fluid bodies. Monthly Notices of the Royal Astronomical Society, 439, 845–860.CrossRef
go back to reference French, R. G., McGhee-French, C. A., Nicholson, P. D., & Hedman, M. M. (2019). Kronoseismology III: Waves in Saturn’s inner C ring. Icarus, 319, 599–626.CrossRef French, R. G., McGhee-French, C. A., Nicholson, P. D., & Hedman, M. M. (2019). Kronoseismology III: Waves in Saturn’s inner C ring. Icarus, 319, 599–626.CrossRef
go back to reference Fuller, J., Luan, J., & Quataert, E. (2016). Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Monthly Notices of the Royal Astronomical Society, 458, 3867–3879.CrossRef Fuller, J., Luan, J., & Quataert, E. (2016). Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Monthly Notices of the Royal Astronomical Society, 458, 3867–3879.CrossRef
go back to reference Goodman, J., & Lackner, C. (2009). Dynamical tides in rotating planets and stars. Astrophysical Journal, 696, 2054–2067.CrossRef Goodman, J., & Lackner, C. (2009). Dynamical tides in rotating planets and stars. Astrophysical Journal, 696, 2054–2067.CrossRef
go back to reference Helled, R. (2019). The interiors of Jupiter and Saturn. In Read P., et al. (Eds.), Oxford research encyclopedia of planetary science. Oxford: Oxford University Press. Helled, R. (2019). The interiors of Jupiter and Saturn. In Read P., et al. (Eds.), Oxford research encyclopedia of planetary science. Oxford: Oxford University Press.
go back to reference Ivanov, P. B., & Papaloizou, J. C. B. (2010). Inertial waves in rotating bodies: A WKBJ formalism for inertial modes and a comparison with numerical results. Monthly Notices of the Royal Astronomical Society, 407, 1609–1630.CrossRef Ivanov, P. B., & Papaloizou, J. C. B. (2010). Inertial waves in rotating bodies: A WKBJ formalism for inertial modes and a comparison with numerical results. Monthly Notices of the Royal Astronomical Society, 407, 1609–1630.CrossRef
go back to reference Ivers, D. J., Jackson, A., & Winch, D. (2015). Enumeration, orthogonality and completeness of the incompressible Coriolis modes in a sphere. Journal of Fluid Mechanics, 766, 468–498.MathSciNetCrossRef Ivers, D. J., Jackson, A., & Winch, D. (2015). Enumeration, orthogonality and completeness of the incompressible Coriolis modes in a sphere. Journal of Fluid Mechanics, 766, 468–498.MathSciNetCrossRef
go back to reference Jouve, L., & Ogilvie, G. I. (2014). Direct numerical simulations of an inertial wave attractor in linear and nonlinear regimes. Journal of Fluid Mechanics, 745, 223–250.MathSciNetCrossRef Jouve, L., & Ogilvie, G. I. (2014). Direct numerical simulations of an inertial wave attractor in linear and nonlinear regimes. Journal of Fluid Mechanics, 745, 223–250.MathSciNetCrossRef
go back to reference Lin, Y., & Ogilvie, G. I. (2018). Tidal dissipation in rotating fluid bodies: The presence of a magnetic field. Monthly Notices of the Royal Astronomical Society, 474, 1644–1656.CrossRef Lin, Y., & Ogilvie, G. I. (2018). Tidal dissipation in rotating fluid bodies: The presence of a magnetic field. Monthly Notices of the Royal Astronomical Society, 474, 1644–1656.CrossRef
go back to reference Lockitch, K. H., & Friedman, J. L. (1999). Where are the r-modes of isentropic stars? Astrophysical Journal, 521, 764–788.CrossRef Lockitch, K. H., & Friedman, J. L. (1999). Where are the r-modes of isentropic stars? Astrophysical Journal, 521, 764–788.CrossRef
go back to reference Maas, L. R. M., & Lam, F. P. A. (1995). Geometric focusing of internal waves. Journal of Fluid Mechanics, 300, 1–41.MathSciNetCrossRef Maas, L. R. M., & Lam, F. P. A. (1995). Geometric focusing of internal waves. Journal of Fluid Mechanics, 300, 1–41.MathSciNetCrossRef
go back to reference Mirouh, G. M., Baruteau, C., Rieutord, M., & Ballot, J. (2016). Gravito-inertial waves in a differentially rotating spherical shell. Journal of Fluid Mechanics, 800, 213–247.MathSciNetCrossRef Mirouh, G. M., Baruteau, C., Rieutord, M., & Ballot, J. (2016). Gravito-inertial waves in a differentially rotating spherical shell. Journal of Fluid Mechanics, 800, 213–247.MathSciNetCrossRef
go back to reference Moore, D. W., & Saffman, P. G. (1969). The structure of free vertical shear layers in a rotating fluid and the motion produced by a slowly rising body. Philosophical Transactions of the Royal Society of London Series A, 264, 597–634.CrossRef Moore, D. W., & Saffman, P. G. (1969). The structure of free vertical shear layers in a rotating fluid and the motion produced by a slowly rising body. Philosophical Transactions of the Royal Society of London Series A, 264, 597–634.CrossRef
go back to reference Ogilvie, G. I. (2005). Wave attractors and the asymptotic dissipation rate of tidal disturbances. Journal of Fluid Mechanics, 543, 19–44.MathSciNetCrossRef Ogilvie, G. I. (2005). Wave attractors and the asymptotic dissipation rate of tidal disturbances. Journal of Fluid Mechanics, 543, 19–44.MathSciNetCrossRef
go back to reference Ogilvie, G. I. (2009). Tidal dissipation in rotating fluid bodies: A simplified model. Monthly Notices of the Royal Astronomical Society, 396, 794–806.CrossRef Ogilvie, G. I. (2009). Tidal dissipation in rotating fluid bodies: A simplified model. Monthly Notices of the Royal Astronomical Society, 396, 794–806.CrossRef
go back to reference Ogilvie, G. I. (2013). Tides in rotating barotropic fluid bodies: The contribution of inertial waves and the role of internal structure. Monthly Notices of the Royal Astronomical Society, 429, 613–632.CrossRef Ogilvie, G. I. (2013). Tides in rotating barotropic fluid bodies: The contribution of inertial waves and the role of internal structure. Monthly Notices of the Royal Astronomical Society, 429, 613–632.CrossRef
go back to reference Ogilvie, G. I. (2014). Tidal dissipation in stars and giant planets. Annual Review of Astronomy and Astrophysics, 52, 171–210.CrossRef Ogilvie, G. I. (2014). Tidal dissipation in stars and giant planets. Annual Review of Astronomy and Astrophysics, 52, 171–210.CrossRef
go back to reference Ogilvie, G. I., & Lin, D. N. C. (2004). Tidal dissipation in rotating giant planets. Astrophysical Journal, 610, 477–509.CrossRef Ogilvie, G. I., & Lin, D. N. C. (2004). Tidal dissipation in rotating giant planets. Astrophysical Journal, 610, 477–509.CrossRef
go back to reference Phillips, O. M. (1981). Wave interactions—The evolution of an idea. Journal of Fluid Mechanics, 106, 215–227.CrossRef Phillips, O. M. (1981). Wave interactions—The evolution of an idea. Journal of Fluid Mechanics, 106, 215–227.CrossRef
go back to reference Prat, V., Lignières, F., & Ballot, J. (2016). Asymptotic theory of gravity modes in rotating stars I. Ray dynamics. Astronomy & Astrophysics, 587, A110. Prat, V., Lignières, F., & Ballot, J. (2016). Asymptotic theory of gravity modes in rotating stars I. Ray dynamics. Astronomy & Astrophysics, 587, A110.
go back to reference Rieutord, M., & Valdettaro, L. (2010). Viscous dissipation by tidally forced inertial modes in a rotating spherical shell. Journal of Fluid Mechanics, 643, 363–394.MathSciNetCrossRef Rieutord, M., & Valdettaro, L. (2010). Viscous dissipation by tidally forced inertial modes in a rotating spherical shell. Journal of Fluid Mechanics, 643, 363–394.MathSciNetCrossRef
go back to reference Rieutord, M., Georgeot, B., & Valdettaro, L. (2001). Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum. Journal of Fluid Mechanics, 435, 103–144.MathSciNetCrossRef Rieutord, M., Georgeot, B., & Valdettaro, L. (2001). Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum. Journal of Fluid Mechanics, 435, 103–144.MathSciNetCrossRef
go back to reference Sridhar, S., & Tremaine, S. (1992). Tidal disruption of viscous bodies. Icarus, 95, 86–99.CrossRef Sridhar, S., & Tremaine, S. (1992). Tidal disruption of viscous bodies. Icarus, 95, 86–99.CrossRef
go back to reference Thompson, M. J., Toomre, J., Anderson, E. R., et al. (1996). Differential rotation and dynamics of the solar interior. Science, 272, 1300–1305.CrossRef Thompson, M. J., Toomre, J., Anderson, E. R., et al. (1996). Differential rotation and dynamics of the solar interior. Science, 272, 1300–1305.CrossRef
go back to reference Weinberg, N. N., Arras, P., Quataert, E., & Burkart, J. (2012). Nonlinear tides in close binary systems. Astrophysical Journal, 751, 136.CrossRef Weinberg, N. N., Arras, P., Quataert, E., & Burkart, J. (2012). Nonlinear tides in close binary systems. Astrophysical Journal, 751, 136.CrossRef
go back to reference Weinberg, N. N., Sun, M., Arras, P., & Essick, R. (2017). Tidal dissipation in WASP-12. Astrophysical Journal, 849, L11.CrossRef Weinberg, N. N., Sun, M., Arras, P., & Essick, R. (2017). Tidal dissipation in WASP-12. Astrophysical Journal, 849, L11.CrossRef
go back to reference Witte, M. G., & Savonije, G. J. (1999). Tidal evolution of eccentric orbits in massive binary systems. A study of resonance locking. Astronomy & Astrophysics, 350, 129–147. Witte, M. G., & Savonije, G. J. (1999). Tidal evolution of eccentric orbits in massive binary systems. A study of resonance locking. Astronomy & Astrophysics, 350, 129–147.
go back to reference Wu, Y. (2005). Origin of tidal dissipation in Jupiter. I. Properties of inertial modes. Astrophysical Journal, 635, 674–687.CrossRef Wu, Y. (2005). Origin of tidal dissipation in Jupiter. I. Properties of inertial modes. Astrophysical Journal, 635, 674–687.CrossRef
Metadata
Title
Internal Waves and Tides in Stars and Giant Planets
Author
Gordon I. Ogilvie
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-22074-7_1

Premium Partners