Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

1. Introduction and Literature Review

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tides are extremely long ocean waves driven by the net force produced by gravitational attraction between sea water, the Earth, Moon, Sun, and other celestial bodies. As gravitational tides sweep across the surface of the Earth, the associated currents are altered by the effects of the Coriolis force, bed friction, and bathymetric features [52]. Acceleration of currents occurs at constrictions, such as in narrowing channels and around headlands [15]. In these localised, accelerated flows, the energy flux is often sufficiently large to allow economically viable extraction of energy from tidal currents using hydro-electric turbines.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference ABPmer (2007) Quantification of exploitable tidal energy resources in UK waters. Technical Report R.1349, ABP Marine Environmental Research, commissioned by npower Juice ABPmer (2007) Quantification of exploitable tidal energy resources in UK waters. Technical Report R.1349, ABP Marine Environmental Research, commissioned by npower Juice
2.
go back to reference Adcock TAA, Draper S, Houlsby GT, Borthwick AGL, Serhadlioǧlu S (2013) The available power from tidal stream turbines in the Pentland Firth. Proc Royal Soc A 469:1471–2946 Adcock TAA, Draper S, Houlsby GT, Borthwick AGL, Serhadlioǧlu S (2013) The available power from tidal stream turbines in the Pentland Firth. Proc Royal Soc A 469:1471–2946
3.
go back to reference Adcock TAA, Draper S, Nishino T (2015) Tidal power generation - A review of hydrodynamic modelling. Proc Inst Mech Eng A 1–17 Adcock TAA, Draper S, Nishino T (2015) Tidal power generation - A review of hydrodynamic modelling. Proc Inst Mech Eng A 1–17
4.
go back to reference Apsley DD, Stallard T, Stansby PK (2018) Actuator-line CFD modelling of tidal-stream turbines in arrays. J Ocean Eng Mar Energy 4(4):259–271CrossRef Apsley DD, Stallard T, Stansby PK (2018) Actuator-line CFD modelling of tidal-stream turbines in arrays. J Ocean Eng Mar Energy 4(4):259–271CrossRef
6.
go back to reference Barth TJ, Griebel M, Keyes DE, Nieminen RM, Roose D, Schlick T (2013) In: Bijl H, Lucor D, Mishra S, Schwab C (eds) Uncertainty quantification in computational fluid dynamics, vol 92. Lecture notes in computational science and engineering. Springer International Publishing, Cham Barth TJ, Griebel M, Keyes DE, Nieminen RM, Roose D, Schlick T (2013) In: Bijl H, Lucor D, Mishra S, Schwab C (eds) Uncertainty quantification in computational fluid dynamics, vol 92. Lecture notes in computational science and engineering. Springer International Publishing, Cham
7.
go back to reference Bellman R (1961) Adaptive control processes. Princeton University Press, Princeton, NJ, United States of AmericaMATHCrossRef Bellman R (1961) Adaptive control processes. Princeton University Press, Princeton, NJ, United States of AmericaMATHCrossRef
8.
go back to reference Betz A (1920) Das Maximum der theoretisch möglichen Ausnützung des Windes durch Windmotoren. Zeitschrift für das gesamte Turbinenwesen 26:307–309 Betz A (1920) Das Maximum der theoretisch möglichen Ausnützung des Windes durch Windmotoren. Zeitschrift für das gesamte Turbinenwesen 26:307–309
9.
go back to reference Black & Veatch Consulting Ltd (2005) Phase II - UK tidal stream energy resource assessment. Technical Report 0, report prepared for the Carbon Trust Marine Energy Challenge Black & Veatch Consulting Ltd (2005) Phase II - UK tidal stream energy resource assessment. Technical Report 0, report prepared for the Carbon Trust Marine Energy Challenge
10.
go back to reference Blunden LS, Bahaj AS, Aziz NS (2013) Tidal current power for Indonesia? An initial resource estimation for the Alas Strait. Renew Energy 49:137–142CrossRef Blunden LS, Bahaj AS, Aziz NS (2013) Tidal current power for Indonesia? An initial resource estimation for the Alas Strait. Renew Energy 49:137–142CrossRef
11.
go back to reference Bonar PAJ, Schnabl Andrea M, Lee W-K, Adcock TAA (2018) Assessment of the Malaysian tidal stream energy resource using an upper bound approach. J Ocean Eng Mar Energy 4:99–109CrossRef Bonar PAJ, Schnabl Andrea M, Lee W-K, Adcock TAA (2018) Assessment of the Malaysian tidal stream energy resource using an upper bound approach. J Ocean Eng Mar Energy 4:99–109CrossRef
12.
go back to reference Cartwright DE (2000) Tides: a scientific history. Cambridge University Press. Cambridge Cartwright DE (2000) Tides: a scientific history. Cambridge University Press. Cambridge
13.
go back to reference Creech AC, Borthwick AG, Ingram D (2017) Effects of support structures in an LES actuator line model of a tidal turbine with contra-rotating rotors. Energies 10(5) Creech AC, Borthwick AG, Ingram D (2017) Effects of support structures in an LES actuator line model of a tidal turbine with contra-rotating rotors. Energies 10(5)
14.
go back to reference Culley DM, Funke SW, Kramer SC, Piggott MD (2015) Tidal stream resource assessment through optimisation of array design with quantification of uncertainty. In: Proceedings of the 11th European wave and tidal energy conference (EWTEC) Culley DM, Funke SW, Kramer SC, Piggott MD (2015) Tidal stream resource assessment through optimisation of array design with quantification of uncertainty. In: Proceedings of the 11th European wave and tidal energy conference (EWTEC)
15.
go back to reference Draper S (2011) Tidal stream energy extraction in coastal basins. PhD thesis, University of Oxford Draper S (2011) Tidal stream energy extraction in coastal basins. PhD thesis, University of Oxford
16.
go back to reference Draper S, Adcock TAA, Borthwick AGL, Houlsby GT (2013) An electrical analogy for the Pentland Firth tidal stream power resource. Proc R Soc A: Math Phys Eng Sci, 470 Draper S, Adcock TAA, Borthwick AGL, Houlsby GT (2013) An electrical analogy for the Pentland Firth tidal stream power resource. Proc R Soc A: Math Phys Eng Sci, 470
17.
go back to reference Draper S, Adcock TAA, Borthwick AGL, Houlsby GT (2014) Estimate of the tidal stream power resource of the Pentland Firth. Renew Energy 63:650–657MATHCrossRef Draper S, Adcock TAA, Borthwick AGL, Houlsby GT (2014) Estimate of the tidal stream power resource of the Pentland Firth. Renew Energy 63:650–657MATHCrossRef
18.
go back to reference Fallon D, Hartnett M, Olbert A, Nash S (2014) The effects of array configuration on the hydro-environmental impacts of tidal turbines. Renew Energy 64:10–25CrossRef Fallon D, Hartnett M, Olbert A, Nash S (2014) The effects of array configuration on the hydro-environmental impacts of tidal turbines. Renew Energy 64:10–25CrossRef
20.
go back to reference Garrett C, Cummins PF (2007) The efficiency of a turbine in a tidal channel. J Fluid Mech 588:243–251MATHCrossRef Garrett C, Cummins PF (2007) The efficiency of a turbine in a tidal channel. J Fluid Mech 588:243–251MATHCrossRef
21.
go back to reference Garrett C, Cummins PF (2008) Limits to tidal current power. Renew Energy 33(11):2485–2490CrossRef Garrett C, Cummins PF (2008) Limits to tidal current power. Renew Energy 33(11):2485–2490CrossRef
22.
go back to reference Ge L, Cheung K, Kobayashi M (2008) Stochastic solution for uncertainty propagation in nonlinear shallow-water equations. J Hydraul Eng 134(December):1732–1743CrossRef Ge L, Cheung K, Kobayashi M (2008) Stochastic solution for uncertainty propagation in nonlinear shallow-water equations. J Hydraul Eng 134(December):1732–1743CrossRef
23.
go back to reference Gillibrand P, Walters R, McIlvenny J (2016) Numerical simulations of the effects of a tidal turbine array on near-bed velocity and local bed shear stress. Energies 9(10):852CrossRef Gillibrand P, Walters R, McIlvenny J (2016) Numerical simulations of the effects of a tidal turbine array on near-bed velocity and local bed shear stress. Energies 9(10):852CrossRef
24.
go back to reference González-Gorbeña E, Rosman PC, Qassim RY (2015) Assessment of the tidal current energy resource in São Marcos Bay, Brazil. J Ocean Eng Mar Energy 1:421–433CrossRef González-Gorbeña E, Rosman PC, Qassim RY (2015) Assessment of the tidal current energy resource in São Marcos Bay, Brazil. J Ocean Eng Mar Energy 1:421–433CrossRef
25.
go back to reference Hagerman G, Polagye B (2006) Methodology for estimating tidal current energy resources and power production by tidal in-stream energy conversion (TISEC) devices. Technical Report EPRI - TP - 001 NA Rev 3, Electric Power Research Institute Hagerman G, Polagye B (2006) Methodology for estimating tidal current energy resources and power production by tidal in-stream energy conversion (TISEC) devices. Technical Report EPRI - TP - 001 NA Rev 3, Electric Power Research Institute
27.
go back to reference Horritt M (2002) Stochastic modelling of 1-D shallow water flows over uncertain topography. J Comput Phys 180(1):327–338MATHCrossRef Horritt M (2002) Stochastic modelling of 1-D shallow water flows over uncertain topography. J Comput Phys 180(1):327–338MATHCrossRef
28.
go back to reference Horritt M (2006) A linearized approach to flow resistance uncertainty in a 2-D finite volume model of flood flow. J Hydrol 316(1–4):13–27CrossRef Horritt M (2006) A linearized approach to flow resistance uncertainty in a 2-D finite volume model of flood flow. J Hydrol 316(1–4):13–27CrossRef
29.
go back to reference Houlsby GT, Draper S, Oldfield M (2008) Application of linear momentum actuator disc theory to open channel flow. Technical report, University of Oxford Houlsby GT, Draper S, Oldfield M (2008) Application of linear momentum actuator disc theory to open channel flow. Technical report, University of Oxford
30.
go back to reference Houlsby GT, Vogel CR (2017) The power available to tidal turbines in an open channel flow. Proc Inst Civil Eng - Energy 170:12–21 Houlsby GT, Vogel CR (2017) The power available to tidal turbines in an open channel flow. Proc Inst Civil Eng - Energy 170:12–21
31.
go back to reference Joukowsky N (1920) Windmill of the NEJ type. In: Transactions of the Central Institute for Aero-hydrodynamics of Moscow, 1(57) Joukowsky N (1920) Windmill of the NEJ type. In: Transactions of the Central Institute for Aero-hydrodynamics of Moscow, 1(57)
32.
go back to reference Kane R (1844) The industrial resources of Ireland Kane R (1844) The industrial resources of Ireland
33.
go back to reference Karsten RH, Swan A, Culina J (2013) Assessment of arrays of in-stream tidal turbines in the Bay of Fundy. Philos Trans R Soc A, Math Phys Eng Sci, p 371 Karsten RH, Swan A, Culina J (2013) Assessment of arrays of in-stream tidal turbines in the Bay of Fundy. Philos Trans R Soc A, Math Phys Eng Sci, p 371
34.
go back to reference Kiureghian AD, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31(2):105–112CrossRef Kiureghian AD, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31(2):105–112CrossRef
35.
go back to reference Lanchester FW (1915) A contribution to the theory of propulsion and the screw propeller. Nav Eng J 27(2):509–510 Lanchester FW (1915) A contribution to the theory of propulsion and the screw propeller. Nav Eng J 27(2):509–510
36.
go back to reference Le Maître OP, Knio OM (2010) Spectral methods for uncertainty quantification. Scientific computation. Springer, Netherlands, Dordrecht Le Maître OP, Knio OM (2010) Spectral methods for uncertainty quantification. Scientific computation. Springer, Netherlands, Dordrecht
37.
go back to reference Lee SH, Chen W (2009) A comparative study of uncertainty propagation methods for black-box-type problems. Struct Multidiscip Optim 37(3):239–253CrossRef Lee SH, Chen W (2009) A comparative study of uncertainty propagation methods for black-box-type problems. Struct Multidiscip Optim 37(3):239–253CrossRef
38.
go back to reference Livermore S (2015) Wave and tidal energy yield uncertainty - refernce document. Technical Report PN000083-SRT-005, Catapult Offshore Renewable Energy Livermore S (2015) Wave and tidal energy yield uncertainty - refernce document. Technical Report PN000083-SRT-005, Catapult Offshore Renewable Energy
39.
go back to reference Lu Z, Zhang D (2003) On importance sampling Monte Carlo approach to uncertainty analysis for flow and transport in porous media. Adv Water Resour 26(11):1177–1188CrossRef Lu Z, Zhang D (2003) On importance sampling Monte Carlo approach to uncertainty analysis for flow and transport in porous media. Adv Water Resour 26(11):1177–1188CrossRef
41.
go back to reference MacKay DJC (2008) Sustainable energy - without the hot air. UIT Cambridge MacKay DJC (2008) Sustainable energy - without the hot air. UIT Cambridge
42.
go back to reference Maljovec D, Wang B, Kupresanin A, Johannesson G, Pascucci V, Bremer P-T (2013) Adaptive sampling with topological scores. Int J Uncertain Quantif 3(2):119–141MathSciNetCrossRef Maljovec D, Wang B, Kupresanin A, Johannesson G, Pascucci V, Bremer P-T (2013) Adaptive sampling with topological scores. Int J Uncertain Quantif 3(2):119–141MathSciNetCrossRef
43.
go back to reference Martin-Short R, Hill J, Kramer SC, Avdis A, Allison Pa, Piggott MD (2015) Tidal resource extraction in the Pentland Firth, UK: potential impacts on flow regime and sediment transport in the Inner Sound of Stroma. Renew Energy 76:596–607 Martin-Short R, Hill J, Kramer SC, Avdis A, Allison Pa, Piggott MD (2015) Tidal resource extraction in the Pentland Firth, UK: potential impacts on flow regime and sediment transport in the Inner Sound of Stroma. Renew Energy 76:596–607
44.
go back to reference Miles JW (1971) Resonant response of harbours: an equivalent-circuit analysis. J Fluid Mech 46(02):241–265MATHCrossRef Miles JW (1971) Resonant response of harbours: an equivalent-circuit analysis. J Fluid Mech 46(02):241–265MATHCrossRef
45.
go back to reference Nash S, O’Brien N, Olbert A, Hartnett M (2014) Modelling the far field hydro-environmental impacts of tidal farms - a focus on tidal regime, inter-tidal zones and flushing. Comput Geosci 71:20–27CrossRef Nash S, O’Brien N, Olbert A, Hartnett M (2014) Modelling the far field hydro-environmental impacts of tidal farms - a focus on tidal regime, inter-tidal zones and flushing. Comput Geosci 71:20–27CrossRef
46.
go back to reference Neill SP, Angeloudis A, Robins PE, Walkington I, Ward SL, Masters I, Lewis MJ, Piano M, Avdis A, Piggott MD, Aggidis G, Evans P, Adcock TA, Židonis A, Ahmadian R, Falconer R (2018) Tidal range energy resource and optimization - past perspectives and future challenges. Renew Energy 127:763–778CrossRef Neill SP, Angeloudis A, Robins PE, Walkington I, Ward SL, Masters I, Lewis MJ, Piano M, Avdis A, Piggott MD, Aggidis G, Evans P, Adcock TA, Židonis A, Ahmadian R, Falconer R (2018) Tidal range energy resource and optimization - past perspectives and future challenges. Renew Energy 127:763–778CrossRef
47.
go back to reference Nishino T, Willden RHJ (2012) The efficiency of an array of tidal turbines partially blocking a wide channel. J Fluid Mech 708:596–606MATHCrossRef Nishino T, Willden RHJ (2012) The efficiency of an array of tidal turbines partially blocking a wide channel. J Fluid Mech 708:596–606MATHCrossRef
48.
go back to reference Nishino T, Willden RHJ (2013) Two-scale dynamics of flow past a partial cross-stream array of tidal turbines. J Fluid Mech 730:220–244MathSciNetMATHCrossRef Nishino T, Willden RHJ (2013) Two-scale dynamics of flow past a partial cross-stream array of tidal turbines. J Fluid Mech 730:220–244MathSciNetMATHCrossRef
49.
go back to reference O’Hara Murray R, Gallego A (2017) A modelling study of the tidal stream resource of the Pentland Firth, Scotland. Renew Energy 102:326–340CrossRef O’Hara Murray R, Gallego A (2017) A modelling study of the tidal stream resource of the Pentland Firth, Scotland. Renew Energy 102:326–340CrossRef
50.
go back to reference Olczak a, Stallard T, Feng T, Stansby PK (2016) Comparison of a RANS blade element model for tidal turbine arrays with laboratory scale measurements of wake velocity and rotor thrust. J Fluids Struct 64:87–106 Olczak a, Stallard T, Feng T, Stansby PK (2016) Comparison of a RANS blade element model for tidal turbine arrays with laboratory scale measurements of wake velocity and rotor thrust. J Fluids Struct 64:87–106
51.
go back to reference Prandle D (1980) Modelling of tidal barrier schemes: an analysis of the open-boundary problem by reference to AC circuit theory. Estuar Coast Mar Sci 53–71 Prandle D (1980) Modelling of tidal barrier schemes: an analysis of the open-boundary problem by reference to AC circuit theory. Estuar Coast Mar Sci 53–71
52.
go back to reference Pugh DT (1996) Tides, surges and mean sea-level (reprinted with corrections). Wiley, Chichester, United Kingdom Pugh DT (1996) Tides, surges and mean sea-level (reprinted with corrections). Wiley, Chichester, United Kingdom
53.
go back to reference Rainey RCT (2009) The optimum position for a tidal power barrage in the Severn estuary. J Fluid Mech 636:497MATHCrossRef Rainey RCT (2009) The optimum position for a tidal power barrage in the Severn estuary. J Fluid Mech 636:497MATHCrossRef
54.
go back to reference Salter SH (2009) Correcting the Under-estimate of the Tidal-Stream Resource of the Pentland Firth. In:Proceedings of the 8th European wave and tidal energy conference (EWTEC) Salter SH (2009) Correcting the Under-estimate of the Tidal-Stream Resource of the Pentland Firth. In:Proceedings of the 8th European wave and tidal energy conference (EWTEC)
55.
go back to reference Salter SH, Taylor JRM (2007) Vertical-axis tidal-current generators and the Pentland Firth. Proc Inst Mech Eng Part A - J Power Enerrgy 22:181–99CrossRef Salter SH, Taylor JRM (2007) Vertical-axis tidal-current generators and the Pentland Firth. Proc Inst Mech Eng Part A - J Power Enerrgy 22:181–99CrossRef
56.
go back to reference Serhadlioǧlu S, Adcock TAA, Houlsby GT, Draper S, Borthwick AGL (2013) Tidal stream energy resource assessment of the Anglesey Skerries. Int J Mar Energy 3–4:98–111CrossRef Serhadlioǧlu S, Adcock TAA, Houlsby GT, Draper S, Borthwick AGL (2013) Tidal stream energy resource assessment of the Anglesey Skerries. Int J Mar Energy 3–4:98–111CrossRef
58.
go back to reference Soulsby RL (1997) Dynamics of marine sands. Thomas Telford Publications, London, United Kingdom Soulsby RL (1997) Dynamics of marine sands. Thomas Telford Publications, London, United Kingdom
59.
go back to reference Sutherland G, Foreman M, Garrett C (2007) Tidal current energy assessment for Johnstone Strait, Vancouver Island. Proc Inst Mech Eng A 221(2):147–157CrossRef Sutherland G, Foreman M, Garrett C (2007) Tidal current energy assessment for Johnstone Strait, Vancouver Island. Proc Inst Mech Eng A 221(2):147–157CrossRef
60.
go back to reference Thacker W, Srinivasan a, Iskandarani M, Knio O, Hénaff ML (2012) Propagating boundary uncertainties using polynomial expansions. Ocean Model 43–44:52–63 Thacker W, Srinivasan a, Iskandarani M, Knio O, Hénaff ML (2012) Propagating boundary uncertainties using polynomial expansions. Ocean Model 43–44:52–63
61.
go back to reference Triton Consultants Ltd (2006) Canada ocean energy atlas (phase 1) potential tidal current energy resources analysis background. Technical report, prepared for the Canadian Hydraulics Centre, Natural Resources Canada Triton Consultants Ltd (2006) Canada ocean energy atlas (phase 1) potential tidal current energy resources analysis background. Technical report, prepared for the Canadian Hydraulics Centre, Natural Resources Canada
63.
go back to reference Vennell R (2011a) Estimating the power potential of tidal currents and the impact of power extraction on flow speeds. Renew Energy 36(12):3558–3565CrossRef Vennell R (2011a) Estimating the power potential of tidal currents and the impact of power extraction on flow speeds. Renew Energy 36(12):3558–3565CrossRef
65.
go back to reference Vogel CR, Willden RH, Houlsby GT (2018) Blade element momentum theory for a tidal turbine. Ocean Eng 169(April):215–226CrossRef Vogel CR, Willden RH, Houlsby GT (2018) Blade element momentum theory for a tidal turbine. Ocean Eng 169(April):215–226CrossRef
66.
go back to reference Whelan J, Thomson M, Graham JMR, Peiró J (2007) Modelling of free surface proximity and wave induced velocities around a horizontal axis tidal stream turbine. In: Proceedings of the \(7^{\text{th}}\) European wave and tidal energy conference, Porto, Portugal Whelan J, Thomson M, Graham JMR, Peiró J (2007) Modelling of free surface proximity and wave induced velocities around a horizontal axis tidal stream turbine. In: Proceedings of the \(7^{\text{th}}\) European wave and tidal energy conference, Porto, Portugal
67.
go back to reference Whelan JI, Graham JMR, Pieró J (2009) Inertia effects on horizontal axis tidal-stream turbines. In: Proceedings of the 8th European wave and tidal energy conference (EWTEC), pp 586–591 Whelan JI, Graham JMR, Pieró J (2009) Inertia effects on horizontal axis tidal-stream turbines. In: Proceedings of the 8th European wave and tidal energy conference (EWTEC), pp 586–591
69.
go back to reference Xiu D, Karniadakis GE (2003) A new stochastic approach to transient heat conduction modeling with uncertainty. Int J Heat Mass Transf 46(24):4681–4693MATHCrossRef Xiu D, Karniadakis GE (2003) A new stochastic approach to transient heat conduction modeling with uncertainty. Int J Heat Mass Transf 46(24):4681–4693MATHCrossRef
Metadata
Title
Introduction and Literature Review
Author
Monika Johanna Kreitmair
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-57658-5_1