Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

1. Introduction and Motivation

Authors : S. Mathavaraj, Radhakant Padhi

Published in: Satellite Formation Flying

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Over the past few decades, there has been immense advancement in the miniaturization of onboard computer, sensor, actuator, and battery technologies. These developments have helped in miniaturing the satellites. Despite this advantage, however, due to their limited size and weight, no meaningful practical mission is possible using small satellites in stand-alone mode. However, in many missions, in principle, one can achieve similar or better performance as compared to a larger satellite using multiple small satellites flying in formation. In view of this, and also because certain missions can only be realized using multiple satellites with some minimum physical separation, an emerging trend across the globe is to have missions involving multiple small, distributed, and inexpensive satellites flying in formation to achieve common objectives.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Reduced mass requires much smaller launch vehicles. However, the launch cost is substantially reduced as small satellites normally fly as pillion rides with conventional prime mission satellites.
 
2
An astronomical interferometer is an array of separate telescopes, mirror segments, or radio telescope antennas that work together as a single telescope to provide higher resolution images of astronomical objects such as stars, nebulas, and galaxies by means of interferometry. Interferometry is most widely used in radio astronomy, in which signals from separate radio telescopes are combined. A mathematical signal processing technique called aperture synthesis is used to combine the separate signals to create high-resolution images. In very long baseline interferometry (VLBI), radio telescopes separated by thousands of kilometers are combined to form a radio interferometer with a resolution which would be given by a hypothetical single dish with an aperture thousands of kilometers in diameter. See Wikipedia for more details: https://​en.​wikipedia.​org/​wiki/​Astronomical_​interferometer.
 
3
Computer tomography is an imaging procedure that uses computer-processed combinations of many X-ray measurements taken from different angles to produce cross-sectional (tomographic) images (virtual ‘slices’) of specific areas of a scanned object, allowing the user to see inside the object without cutting.
 
4
Photogrammetry is the science and technology of obtaining reliable information about physical objects and the environment through the process of recording, measuring, and interpreting photographic images and patterns of electromagnetic radiant imagery and other phenomena.
 
Literature
3.
go back to reference Nogueira, T., J. Scharnagl, S. Kotsiaros, and K. Schilling. 2015. NetSat-4G: A four nano-satellite formation for global geomagnetic gradiometry. In 10th IAA Symposium on Small Satellites for Earth Observation. Nogueira, T., J. Scharnagl, S. Kotsiaros, and K. Schilling. 2015. NetSat-4G: A four nano-satellite formation for global geomagnetic gradiometry. In 10th IAA Symposium on Small Satellites for Earth Observation.
5.
go back to reference Davis, E., C. Dunn, R. Stanton, and J. Thomas. 1999. The GRACE mission: Meeting the technical challenges. Technical Report, NASA. Davis, E., C. Dunn, R. Stanton, and J. Thomas. 1999. The GRACE mission: Meeting the technical challenges. Technical Report, NASA.
6.
go back to reference Huber, S., M. Younis, and G. Krieger. 2010. The TanDEM-X mission: Overview and interferometric performance. International Journal of Microwave and Wireless Technologies 2 (3–4): 379–389.CrossRef Huber, S., M. Younis, and G. Krieger. 2010. The TanDEM-X mission: Overview and interferometric performance. International Journal of Microwave and Wireless Technologies 2 (3–4): 379–389.CrossRef
7.
go back to reference Gill, E., S. D’Amico, and O. Montenbruck. 2007. Autonomous formation flying for the PRISMA mission. Journal of Spacecraft and Rockets 44 (3): 671–681.CrossRef Gill, E., S. D’Amico, and O. Montenbruck. 2007. Autonomous formation flying for the PRISMA mission. Journal of Spacecraft and Rockets 44 (3): 671–681.CrossRef
8.
go back to reference Kahr, E., N. Roth, O. Montenbruck, B. Risi, and R.E. Zee. 2018. GPS relative navigation for the CanX-4 and CanX-5 formation-flying nanosatellites. Journal of Spacecraft and Rockets 55 (6): 1545–1558.CrossRef Kahr, E., N. Roth, O. Montenbruck, B. Risi, and R.E. Zee. 2018. GPS relative navigation for the CanX-4 and CanX-5 formation-flying nanosatellites. Journal of Spacecraft and Rockets 55 (6): 1545–1558.CrossRef
9.
go back to reference Schilling, K. 2020. I-3d: Formations of small satellites. In Nanosatellites: Space and ground technologies, operations and economics, 327–339. Schilling, K. 2020. I-3d: Formations of small satellites. In Nanosatellites: Space and ground technologies, operations and economics, 327–339.
10.
go back to reference Roberts, S.M., and J.S. Shipman. 1972. Two point boundary value problems: Shooting methods. New York, USA: American Elsevier Publishing Company Inc.MATH Roberts, S.M., and J.S. Shipman. 1972. Two point boundary value problems: Shooting methods. New York, USA: American Elsevier Publishing Company Inc.MATH
11.
go back to reference Betts, J.T. 2001. Practical methods for optimal control using nonlinear programming. Philadelphia, USA: The Society for Industrial and Applied Mathematics. Betts, J.T. 2001. Practical methods for optimal control using nonlinear programming. Philadelphia, USA: The Society for Industrial and Applied Mathematics.
12.
go back to reference Bryson, A.E., and Y.C. Ho. 1975. Applied optimal control. Hemisphere Publishing Corporation. Bryson, A.E., and Y.C. Ho. 1975. Applied optimal control. Hemisphere Publishing Corporation.
13.
go back to reference Anderson, B.D., and J.B. Moore. 2007. Optimal control: Linear quadratic methods. Courier Corporation. Anderson, B.D., and J.B. Moore. 2007. Optimal control: Linear quadratic methods. Courier Corporation.
14.
go back to reference Naidu, D.S. 2002. Optimal control systems. CRC Press. Naidu, D.S. 2002. Optimal control systems. CRC Press.
15.
go back to reference Sinha, A. 2007. Linear systems: Optimal and robust control. CRC Press. Sinha, A. 2007. Linear systems: Optimal and robust control. CRC Press.
16.
go back to reference Jin, X., and H. Lifu. 2011. Formation keeping of micro-satellites LQR control algorithms analysis, vol. 4. Jin, X., and H. Lifu. 2011. Formation keeping of micro-satellites LQR control algorithms analysis, vol. 4.
17.
go back to reference Wernli, A., and G. Cook. 1975. Suboptimal control for the nonlinear quadratic regulator problem. Automatica 11 (1): 75–84.MathSciNetCrossRef Wernli, A., and G. Cook. 1975. Suboptimal control for the nonlinear quadratic regulator problem. Automatica 11 (1): 75–84.MathSciNetCrossRef
18.
go back to reference Cloutier, J.R. 1997. State-dependent Riccati equation techniques: An overview. In Proceedings of the 1997 American Control Conference, vol. 2, 932–936. IEEE. Cloutier, J.R. 1997. State-dependent Riccati equation techniques: An overview. In Proceedings of the 1997 American Control Conference, vol. 2, 932–936. IEEE.
19.
go back to reference Heydari, A., and S.N. Balakrishnan. 2012. Approximate closed-form solutions to finite-horizon optimal control of nonlinear systems. In American Control Conference (ACC), 2657–2662. IEEE. Heydari, A., and S.N. Balakrishnan. 2012. Approximate closed-form solutions to finite-horizon optimal control of nonlinear systems. In American Control Conference (ACC), 2657–2662. IEEE.
20.
go back to reference Cimen, T. 2012. Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis. Journal of Guidance, Control, and Dynamics 35 (4): 1025–1047.CrossRef Cimen, T. 2012. Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis. Journal of Guidance, Control, and Dynamics 35 (4): 1025–1047.CrossRef
21.
go back to reference Xin, M., and S. Balakrishnan. 2005. A new method for suboptimal control of a class of non-linear systems. Optimal Control Applications and Methods 26 (2): 55–83.MathSciNetCrossRef Xin, M., and S. Balakrishnan. 2005. A new method for suboptimal control of a class of non-linear systems. Optimal Control Applications and Methods 26 (2): 55–83.MathSciNetCrossRef
22.
go back to reference Osborne, M.R. 1969. On shooting methods for boundary value problems. Journal of Mathematical Analysis and Applications 27 (2): 417–433.MathSciNetCrossRef Osborne, M.R. 1969. On shooting methods for boundary value problems. Journal of Mathematical Analysis and Applications 27 (2): 417–433.MathSciNetCrossRef
23.
go back to reference Keller, H.B. 2018. Numerical methods for two-point boundary-value problems. Courier Dover Publications. Keller, H.B. 2018. Numerical methods for two-point boundary-value problems. Courier Dover Publications.
24.
go back to reference Bellman, R., and R.E. Kalaba. 1965. Dynamic programming and modern control theory, vol. 81. Citeseer. Bellman, R., and R.E. Kalaba. 1965. Dynamic programming and modern control theory, vol. 81. Citeseer.
25.
go back to reference Larson, R.E., J.L. Casti, and J.L. Casti. 1978. Principles of dynamic programming. New York: Marcel Dekker.MATH Larson, R.E., J.L. Casti, and J.L. Casti. 1978. Principles of dynamic programming. New York: Marcel Dekker.MATH
26.
go back to reference Bertsekas, D.P. 1995. Dynamic programming and optimal control, vol. 1. MA: Athena scientific Belmont. Bertsekas, D.P. 1995. Dynamic programming and optimal control, vol. 1. MA: Athena scientific Belmont.
27.
go back to reference Werbos, P.J. 1992. Approximate dynamic programming for real-time control and neural modeling, ed. D.A. White, D.A. Sofge. New York: Van Nostrand Reinhold. Werbos, P.J. 1992. Approximate dynamic programming for real-time control and neural modeling, ed. D.A. White, D.A. Sofge. New York: Van Nostrand Reinhold.
28.
go back to reference Powell, W.B. 2004. Handbook of learning and approximate dynamic programming, vol. 2. Wiley. Powell, W.B. 2004. Handbook of learning and approximate dynamic programming, vol. 2. Wiley.
29.
go back to reference Bock, H.G., and K.-J. Plitt. 1984. A multiple shooting algorithm for direct solution of optimal control problems. IFAC Proceedings Volumes 17 (2): 1603–1608.CrossRef Bock, H.G., and K.-J. Plitt. 1984. A multiple shooting algorithm for direct solution of optimal control problems. IFAC Proceedings Volumes 17 (2): 1603–1608.CrossRef
30.
go back to reference Betts, J.T. 1994. Issues in the direct transcription of optimal control problems to sparse nonlinear programs. In Computational optimal control, 3–17. Springer. Betts, J.T. 1994. Issues in the direct transcription of optimal control problems to sparse nonlinear programs. In Computational optimal control, 3–17. Springer.
31.
go back to reference Bulirsch, R., and D. Kraft. 2012. Computational optimal control, Vol. 115. Birkhäuser. Bulirsch, R., and D. Kraft. 2012. Computational optimal control, Vol. 115. Birkhäuser.
32.
go back to reference Subchan, S., and R. Zbikowski. 2009. Computational optimal control. Dhrivenham: Cranfield University.CrossRef Subchan, S., and R. Zbikowski. 2009. Computational optimal control. Dhrivenham: Cranfield University.CrossRef
33.
go back to reference Gill, P.E., W. Murray, and M.A. Saunders. 2005. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Review 47 (1): 99–131.MathSciNetCrossRef Gill, P.E., W. Murray, and M.A. Saunders. 2005. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Review 47 (1): 99–131.MathSciNetCrossRef
34.
go back to reference Kawajir, Y., C. Laird, and A. Wachter. 2006. Introduction to IPOPT: A tutorial for downloading, installing, and using IPOPT. Technical Report, November, 2006. Kawajir, Y., C. Laird, and A. Wachter. 2006. Introduction to IPOPT: A tutorial for downloading, installing, and using IPOPT. Technical Report, November, 2006.
35.
go back to reference Mayne, D.Q., J.B. Rawlings, C.V. Rao, and P.O. Scokaert. 2000. Constrained model predictive control: Stability and optimality. Automatica 36 (6): 789–814.MathSciNetCrossRef Mayne, D.Q., J.B. Rawlings, C.V. Rao, and P.O. Scokaert. 2000. Constrained model predictive control: Stability and optimality. Automatica 36 (6): 789–814.MathSciNetCrossRef
36.
go back to reference Pluymers, B., J. Rossiter, J. Suykens, and B. De Moor. 2005. A simple algorithm for robust MPC. In Proceedings of the IFAC World Congress. Pluymers, B., J. Rossiter, J. Suykens, and B. De Moor. 2005. A simple algorithm for robust MPC. In Proceedings of the IFAC World Congress.
37.
go back to reference Fernandez-Camacho, E., and C. Bordons-Alba. 1995. Model predictive control in the process industry. Springer. Fernandez-Camacho, E., and C. Bordons-Alba. 1995. Model predictive control in the process industry. Springer.
38.
go back to reference Allgöwer, F., and A. Zheng. 2012. Nonlinear model predictive control, vol. 26. Birkhäuser. Allgöwer, F., and A. Zheng. 2012. Nonlinear model predictive control, vol. 26. Birkhäuser.
39.
go back to reference Qin, S.J., and T.A. Badgwell. 2000. An overview of nonlinear model predictive control applications. In Nonlinear model predictive control, 369–392. Springer. Qin, S.J., and T.A. Badgwell. 2000. An overview of nonlinear model predictive control applications. In Nonlinear model predictive control, 369–392. Springer.
40.
go back to reference Padhi, R., and M. Kothari. 2009. Model predictive static programming: A computaionally efficient technique for suboptimal control design. International Journal of Innovative Computing, Information and Control 5 (2): 399–411. Padhi, R., and M. Kothari. 2009. Model predictive static programming: A computaionally efficient technique for suboptimal control design. International Journal of Innovative Computing, Information and Control 5 (2): 399–411.
41.
go back to reference Halbe, O., R.G. Raja, and R. Padhi. 2013. Robust reentry guidance of a reusable launch vehicle using model predictive static programming. Journal of Guidance, Control, and Dynamics 37 (1): 134–148.CrossRef Halbe, O., R.G. Raja, and R. Padhi. 2013. Robust reentry guidance of a reusable launch vehicle using model predictive static programming. Journal of Guidance, Control, and Dynamics 37 (1): 134–148.CrossRef
42.
go back to reference Maity, A., R. Padhi, S. Mallaram, and M. Manickavasagam. 2012. MPSP guidance of a solid motor propelled launch vehicle for a hypersonic mission. In AIAA Guidance, Navigation, and Control Conference, 4474. Maity, A., R. Padhi, S. Mallaram, and M. Manickavasagam. 2012. MPSP guidance of a solid motor propelled launch vehicle for a hypersonic mission. In AIAA Guidance, Navigation, and Control Conference, 4474.
43.
go back to reference Maity, A., H.B. Oza, and R. Padhi. 2014. Generalized model predictive static programming and angle-constrained guidance of air-to-ground missiles. Journal of Guidance, Control, and Dynamics 37 (6): 1897–1913.CrossRef Maity, A., H.B. Oza, and R. Padhi. 2014. Generalized model predictive static programming and angle-constrained guidance of air-to-ground missiles. Journal of Guidance, Control, and Dynamics 37 (6): 1897–1913.CrossRef
44.
go back to reference Kumar, P., B.B. Anoohya, and R. Padhi. 2019. Model predictive static programming for optimal command tracking: A fast model predictive control paradigm. Journal of Dynamic Systems, Measurement, and Control 141 (2): 021014.CrossRef Kumar, P., B.B. Anoohya, and R. Padhi. 2019. Model predictive static programming for optimal command tracking: A fast model predictive control paradigm. Journal of Dynamic Systems, Measurement, and Control 141 (2): 021014.CrossRef
45.
go back to reference Mathavaraj, S., and R. Padhi. 2019a. Unscented MPSP for optimal control of a class of uncertain nonlinear dynamic systems. Journal of Dynamic Systems, Measurement, and Control 141 (6): 065001.CrossRef Mathavaraj, S., and R. Padhi. 2019a. Unscented MPSP for optimal control of a class of uncertain nonlinear dynamic systems. Journal of Dynamic Systems, Measurement, and Control 141 (6): 065001.CrossRef
46.
go back to reference Ross, I.M., and F. Fahroo. 2002. A direct method for solving nonsmooth optimal control problems. IFAC Proceedings Volumes 35 (1): 479–484.CrossRef Ross, I.M., and F. Fahroo. 2002. A direct method for solving nonsmooth optimal control problems. IFAC Proceedings Volumes 35 (1): 479–484.CrossRef
47.
go back to reference Elnagar, G.N., and M.A. Kazemi. 1998. Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems. Computational Optimization and Applications 11 (2): 195–217.MathSciNetCrossRef Elnagar, G.N., and M.A. Kazemi. 1998. Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems. Computational Optimization and Applications 11 (2): 195–217.MathSciNetCrossRef
48.
go back to reference Krstic, M., I. Kanellakopoulos, and P. Kokotovic. 1995. Nonlinear and adaptive control design. New York: Willey.MATH Krstic, M., I. Kanellakopoulos, and P. Kokotovic. 1995. Nonlinear and adaptive control design. New York: Willey.MATH
49.
go back to reference Egardt, B. 1979. Stability of adaptive controllers, vol. 20. Springer. Egardt, B. 1979. Stability of adaptive controllers, vol. 20. Springer.
50.
go back to reference Moody, J.E. 1992. The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems. In Advances in neural information processing systems, 847–854. Moody, J.E. 1992. The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems. In Advances in neural information processing systems, 847–854.
51.
go back to reference Padhi, R., N. Unnikrishnan, and S.N. Balakrishnan. 2007. Model-following neuro-adaptive control design for non-square, non-affine nonlinear systems. IET Control Theory Applications 1 (6): 1650–1661. Padhi, R., N. Unnikrishnan, and S.N. Balakrishnan. 2007. Model-following neuro-adaptive control design for non-square, non-affine nonlinear systems. IET Control Theory Applications 1 (6): 1650–1661.
52.
go back to reference Suykens, J.A., J.P. Vandewalle, and B.L. de Moor. 2012. Artificial neural networks for modelling and control of non-linear systems. Springer Science & Business Media. Suykens, J.A., J.P. Vandewalle, and B.L. de Moor. 2012. Artificial neural networks for modelling and control of non-linear systems. Springer Science & Business Media.
53.
go back to reference Ge, S., C. Hang, T. Lee, and T. Zhang. 2013. Stable adaptive neural network control. The International Series on Asian Studies in Computer and Information Science. US: Springer. Ge, S., C. Hang, T. Lee, and T. Zhang. 2013. Stable adaptive neural network control. The International Series on Asian Studies in Computer and Information Science. US: Springer.
54.
go back to reference Park, H.E., S.Y. Park, and K.H. Choi. 2011. Satellite formation reconfiguration and station keeping using SDRE technique. Aerospace Science And Technology 15: 440–452.CrossRef Park, H.E., S.Y. Park, and K.H. Choi. 2011. Satellite formation reconfiguration and station keeping using SDRE technique. Aerospace Science And Technology 15: 440–452.CrossRef
55.
go back to reference Won, C.H., and H.S. Ahn. 2003. Nonlinear orbital dynamic equations and state-dependent Riccati equation control of formation flying satellites. Journal of the Astronautical Sciences 51 (4): 433–450.MathSciNetCrossRef Won, C.H., and H.S. Ahn. 2003. Nonlinear orbital dynamic equations and state-dependent Riccati equation control of formation flying satellites. Journal of the Astronautical Sciences 51 (4): 433–450.MathSciNetCrossRef
56.
go back to reference Irvin, D.J., and D.R. Jacques. 2002. A study of linear versus nonlinear control techniques for the reconfiguration of satellite formations. In Advances in the astronautical sciences 589–608. Irvin, D.J., and D.R. Jacques. 2002. A study of linear versus nonlinear control techniques for the reconfiguration of satellite formations. In Advances in the astronautical sciences 589–608.
57.
go back to reference Lim, H., H. Bang, and S. Lee. 2006. Adaptive backstepping control for satellite formation flying with mass uncertainty. Journal of Astronomy and Space Sciences 23 (4): 405.CrossRef Lim, H., H. Bang, and S. Lee. 2006. Adaptive backstepping control for satellite formation flying with mass uncertainty. Journal of Astronomy and Space Sciences 23 (4): 405.CrossRef
58.
go back to reference Pongvthithum, R., S. Veres, S. Gabriel, and E. Rogers. 2005. Universal adaptive control of satellite formation flying. International Journal of Control 78 (1): 45–52.MathSciNetCrossRef Pongvthithum, R., S. Veres, S. Gabriel, and E. Rogers. 2005. Universal adaptive control of satellite formation flying. International Journal of Control 78 (1): 45–52.MathSciNetCrossRef
59.
go back to reference Gurfil, P., M. Idan, and N.J. Kasdin. 2003. Adaptive neural control of deep-space formation flying. Journal of Guidance, Control, and Dynamics 26 (3): 491–501.CrossRef Gurfil, P., M. Idan, and N.J. Kasdin. 2003. Adaptive neural control of deep-space formation flying. Journal of Guidance, Control, and Dynamics 26 (3): 491–501.CrossRef
60.
go back to reference Enns, D., D. Bugajski, R. Hendrick, and G. Stein. 1994. Dynamic inversion: An evolving methodology for flight control design. International Journal of Control 59 (1): 71–91.CrossRef Enns, D., D. Bugajski, R. Hendrick, and G. Stein. 1994. Dynamic inversion: An evolving methodology for flight control design. International Journal of Control 59 (1): 71–91.CrossRef
61.
go back to reference Slotine, J.J., and W. Li. 1991. Applied nonlinear control. Prentice Hall. Slotine, J.J., and W. Li. 1991. Applied nonlinear control. Prentice Hall.
62.
go back to reference Kim, B.S., and A.J. Calise. 1997. Nonlinear flight control using neural networks. AIAA Journal of Guidance, Control and Dynamics 20 (1): 26–33.CrossRef Kim, B.S., and A.J. Calise. 1997. Nonlinear flight control using neural networks. AIAA Journal of Guidance, Control and Dynamics 20 (1): 26–33.CrossRef
63.
go back to reference Padhi, R., S.N. Balakrishnan, and N. Unnikrishnan. 2007. Model-following neuro-adaptive control design for non-square, non-affine nonlinear systems. IET Control Theory Application 1 (6): 1650–1661. Padhi, R., S.N. Balakrishnan, and N. Unnikrishnan. 2007. Model-following neuro-adaptive control design for non-square, non-affine nonlinear systems. IET Control Theory Application 1 (6): 1650–1661.
64.
go back to reference Sparks, A. 2000. Satellite formation keeping control in the presence of gravity perturbations. Proceedings of American Control Conference 2: 844–848. Sparks, A. 2000. Satellite formation keeping control in the presence of gravity perturbations. Proceedings of American Control Conference 2: 844–848.
65.
go back to reference Ahn, H.S., K.L. Moore, and Y.Q. Chen. 2010. Trajectory keeping in satellite formation flying via robust periodic control. International Journal of Robust and Non-linear Control 20: 1655–1666.MathSciNetCrossRef Ahn, H.S., K.L. Moore, and Y.Q. Chen. 2010. Trajectory keeping in satellite formation flying via robust periodic control. International Journal of Robust and Non-linear Control 20: 1655–1666.MathSciNetCrossRef
66.
go back to reference De Queiroz, M., V. Kapila, and Q. Yan. 2000. Adaptive nonlinear control of multiple spacecraft formation flying. Journal of Guidance, Control, and Dynamics 23 (3): 385–390.CrossRef De Queiroz, M., V. Kapila, and Q. Yan. 2000. Adaptive nonlinear control of multiple spacecraft formation flying. Journal of Guidance, Control, and Dynamics 23 (3): 385–390.CrossRef
67.
go back to reference Mishne, D. 2004. Formation control of satellites subject to drag variations and \(J_2\) perturbations. Journal of Guidance, Control, and Dynamics 27 (4): 685–692.CrossRef Mishne, D. 2004. Formation control of satellites subject to drag variations and \(J_2\) perturbations. Journal of Guidance, Control, and Dynamics 27 (4): 685–692.CrossRef
Metadata
Title
Introduction and Motivation
Authors
S. Mathavaraj
Radhakant Padhi
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9631-5_1

Premium Partner