Skip to main content
Top
Published in:
Cover of the book

2013 | OriginalPaper | Chapter

1. Introduction: Smart Materials as Essential Base for Actuators in Micro/Nanopositioning

Authors : Micky Rakotondrabe, Mohammad Al Janaideh, Alex Bienaimé, Qingsong Xu

Published in: Smart Materials-Based Actuators at the Micro/Nano-Scale

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The main motivations of using smart materials as fundamental in micro/ nanopositioning systems are presented in this chapter. It is shown that the design of classical (or macro) actuated systems cannot directly be used to design small ones, particularly those used for micro/nanopositioning. While in macro, many components are assembled to form the actuated systems, in micro one attempts to reduce the number of elements in order to ensure some resolution and accuracy of positioning and in order to make easy their fabrication. Smart and active materials are therefore seen as the principal and essential component in microsystems and systems working at the micro/nano-scale. Their advantages are detailed in the chapter and some of the behaviors (hysteresis and creep) that are often encountered are explained. A particular attention is given to piezoelectric materials since nine chapters of the book treat them.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference I. Ivan, M. Rakotondrabe, P. Lutz, N. Chaillet, Quasistatic displacement self-sensing method for cantilevered piezoelectric actuators. Rev. Sci. Instrum. 80(6), 065102-1–065102-8 (2009) I. Ivan, M. Rakotondrabe, P. Lutz, N. Chaillet, Quasistatic displacement self-sensing method for cantilevered piezoelectric actuators. Rev. Sci. Instrum. 80(6), 065102-1–065102-8 (2009)
3.
go back to reference M. Al Janaideh, S. Rakheja, C.-Y. Su, An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Trans. Mechatron. 16(4), 734–744 (2011)CrossRef M. Al Janaideh, S. Rakheja, C.-Y. Su, An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Trans. Mechatron. 16(4), 734–744 (2011)CrossRef
4.
go back to reference Q. Xu, Design and development of a flexure-based dual-stage nanopositioning system with minimum interference behavior. IEEE Trans. Autom. Sci. Eng. 9(3), 554–563 (2012)CrossRef Q. Xu, Design and development of a flexure-based dual-stage nanopositioning system with minimum interference behavior. IEEE Trans. Autom. Sci. Eng. 9(3), 554–563 (2012)CrossRef
5.
go back to reference K. Leang, A. Fleming, High-speed serial-kinematic SPM scanner: design and drive considerations. Asian J. Contr. 11(2), 144–153 (2009)CrossRef K. Leang, A. Fleming, High-speed serial-kinematic SPM scanner: design and drive considerations. Asian J. Contr. 11(2), 144–153 (2009)CrossRef
6.
go back to reference M. Rakotondrabe, I. Ivan, Development and force/position control of a new hybrid thermopiezoelectric microgripper dedicated to micromanipulation tasks. IEEE Trans. Autom. Sci. Eng. 8(4), 824–834 (2011)CrossRef M. Rakotondrabe, I. Ivan, Development and force/position control of a new hybrid thermopiezoelectric microgripper dedicated to micromanipulation tasks. IEEE Trans. Autom. Sci. Eng. 8(4), 824–834 (2011)CrossRef
7.
go back to reference Y. Yong, A. Fleming, S. Moheimani, A novel piezoelectric strain sensor for simultaneous damping and tracking control of a high-speed nanopositioner. IEEE/ASME Trans. Mechatronics 18(3), 1113–1121 (2013)CrossRef Y. Yong, A. Fleming, S. Moheimani, A novel piezoelectric strain sensor for simultaneous damping and tracking control of a high-speed nanopositioner. IEEE/ASME Trans. Mechatronics 18(3), 1113–1121 (2013)CrossRef
8.
go back to reference S. Lee, B. Youn, A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin. IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 58(3), 629–645 (2011)CrossRef S. Lee, B. Youn, A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin. IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 58(3), 629–645 (2011)CrossRef
9.
go back to reference A. Wills, D. Bates, A. Fleming, B. Ninness, S. Moheimani, Model predictive control applied to constraint handling in active noise and vibration control. IEEE Trans. Contr. Syst. Technol. 16(1), 3–12 (2008)CrossRef A. Wills, D. Bates, A. Fleming, B. Ninness, S. Moheimani, Model predictive control applied to constraint handling in active noise and vibration control. IEEE Trans. Contr. Syst. Technol. 16(1), 3–12 (2008)CrossRef
10.
go back to reference M. Viscardi, L. Lecce, An integrated system for active vibro-acoustic control and damage detection on a typical aeronautical structure, in Proceedings of IEEE International Conference on Control Applications, Glasgow, Scotland, 2002, pp. 477–482 M. Viscardi, L. Lecce, An integrated system for active vibro-acoustic control and damage detection on a typical aeronautical structure, in Proceedings of IEEE International Conference on Control Applications, Glasgow, Scotland, 2002, pp. 477–482
11.
go back to reference Mayergoyz, Mathematical Models of Hysteresis (Elsevier, New York, 2003) Mayergoyz, Mathematical Models of Hysteresis (Elsevier, New York, 2003)
12.
go back to reference R. Gorbet, Control of hysteresis systems with Preisach representations, Ph.D. Dissertation, University of Waterloo, ON, 1997 R. Gorbet, Control of hysteresis systems with Preisach representations, Ph.D. Dissertation, University of Waterloo, ON, 1997
13.
go back to reference C. Visone, Hysteresis modelling and compensation for smart sensors and actuators. J. Phys.: Conf. Ser. 138, 1–25 (2008) C. Visone, Hysteresis modelling and compensation for smart sensors and actuators. J. Phys.: Conf. Ser. 138, 1–25 (2008)
14.
go back to reference M. Rakotondrabe, C. Clevy, P. Lutz, Complete open loop control of hysteretic, creeped, and oscillating piezoelectric cantilevers. IEEE Trans. Autom. Sci. Eng. 7(3), 440–450 (2010)CrossRef M. Rakotondrabe, C. Clevy, P. Lutz, Complete open loop control of hysteretic, creeped, and oscillating piezoelectric cantilevers. IEEE Trans. Autom. Sci. Eng. 7(3), 440–450 (2010)CrossRef
15.
go back to reference M. Al Janaideh, S. Rakheja, C.-Y. Su, Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator. Mechatronics 17(5), 656–670 (2009)CrossRef M. Al Janaideh, S. Rakheja, C.-Y. Su, Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator. Mechatronics 17(5), 656–670 (2009)CrossRef
16.
go back to reference P. Krejčí, M. Al Janaideh, F. Deasy, Inversion of hysteresis and creep operators. Physica B 407(9), 1354–1356 (2012)CrossRef P. Krejčí, M. Al Janaideh, F. Deasy, Inversion of hysteresis and creep operators. Physica B 407(9), 1354–1356 (2012)CrossRef
17.
go back to reference S. Devasia, E. Eleftheriou, R. Moheimani, A survey of control issues in nanopositioning. IEEE Trans. Contr. Syst. Technol. 15(5), 802–823 (2007)CrossRef S. Devasia, E. Eleftheriou, R. Moheimani, A survey of control issues in nanopositioning. IEEE Trans. Contr. Syst. Technol. 15(5), 802–823 (2007)CrossRef
18.
go back to reference P. Ge, M. Jouaneh, Tracking control of a piezoceramic actuator. IEEE Trans. Contr. Syst. Technol. 4(3), 209–216 (1996)CrossRef P. Ge, M. Jouaneh, Tracking control of a piezoceramic actuator. IEEE Trans. Contr. Syst. Technol. 4(3), 209–216 (1996)CrossRef
19.
go back to reference D. Hughes, J. Wen, Preisach modelling of piezoceramic and shape memory alloy hysteresis. Smart Mater. Struct. 6(3), 287–300 (1997)CrossRef D. Hughes, J. Wen, Preisach modelling of piezoceramic and shape memory alloy hysteresis. Smart Mater. Struct. 6(3), 287–300 (1997)CrossRef
20.
21.
go back to reference M. Rakotondrabe, Bouc–Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans. Autom. Sci. Eng. 8(2), 428–431 (2011)CrossRef M. Rakotondrabe, Bouc–Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans. Autom. Sci. Eng. 8(2), 428–431 (2011)CrossRef
22.
go back to reference M. Rakotondrabe, Classical Prandtl–Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators, in Proceedings of American Control Conference, Montreal, Canada, 2012, pp. 1646–1651 M. Rakotondrabe, Classical Prandtl–Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators, in Proceedings of American Control Conference, Montreal, Canada, 2012, pp. 1646–1651
23.
go back to reference K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities—a modified Prandtl–Ishlinskii approach. Eur. J. Contr. 9(4), 407–418 (2003)CrossRef K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities—a modified Prandtl–Ishlinskii approach. Eur. J. Contr. 9(4), 407–418 (2003)CrossRef
24.
25.
go back to reference M. Al Janaideh, J. Yan, A. D’Amato, D.S. Bernstein, Retrospective-cost adaptive control of uncertain Hammerstein-Wiener systems with memoryless and hysteretic nonlinearities, in Proceedings of AIAA Guidance, Navigation, and Control Conference, Minneapolis, USA, AIAA-2012-4449-671, 2012, pp. 1–26 M. Al Janaideh, J. Yan, A. D’Amato, D.S. Bernstein, Retrospective-cost adaptive control of uncertain Hammerstein-Wiener systems with memoryless and hysteretic nonlinearities, in Proceedings of AIAA Guidance, Navigation, and Control Conference, Minneapolis, USA, AIAA-2012-4449-671, 2012, pp. 1–26
26.
go back to reference M. Al Janaideh, E. Sumer, J. Yan, D. Anthony, B. Drincic, K. Aljanaideh, D. Bernstein, Adaptive control of uncertain linear systems with uncertain hysteretic input nonlinearities, in Proceedings of ASME Dynamic Systems and Control Conference, Lauderdale, FL, USA, 2012, pp. 1–10 M. Al Janaideh, E. Sumer, J. Yan, D. Anthony, B. Drincic, K. Aljanaideh, D. Bernstein, Adaptive control of uncertain linear systems with uncertain hysteretic input nonlinearities, in Proceedings of ASME Dynamic Systems and Control Conference, Lauderdale, FL, USA, 2012, pp. 1–10
27.
go back to reference M. Al Janaideh, Y. Feng, S. Rakheja, Y. Tan, C.-Y. Su, Generalized Prandtl–Ishlinskii hysteresis: modeling and robust control, in Proceedings of IEEE Conference on Decision and Control, Shanghai, China, 2009, pp. 7279–7284 M. Al Janaideh, Y. Feng, S. Rakheja, Y. Tan, C.-Y. Su, Generalized Prandtl–Ishlinskii hysteresis: modeling and robust control, in Proceedings of IEEE Conference on Decision and Control, Shanghai, China, 2009, pp. 7279–7284
28.
go back to reference K. Leang, Q. Zou, S. Devasia, Feedforward control of piezoactuators in atomic force microscope systems: inversion-based compensation for dynamics and hysteresis. IEEE Contr. Syst. Mag. 19(1), 70–82 (2009)MathSciNetCrossRef K. Leang, Q. Zou, S. Devasia, Feedforward control of piezoactuators in atomic force microscope systems: inversion-based compensation for dynamics and hysteresis. IEEE Contr. Syst. Mag. 19(1), 70–82 (2009)MathSciNetCrossRef
29.
go back to reference K. Kuhnen, P. Krejčí, Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems: a new Preisach modeling approach. IEEE Trans. Automat. Contr. 54(3), 537–550 (2009)CrossRef K. Kuhnen, P. Krejčí, Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems: a new Preisach modeling approach. IEEE Trans. Automat. Contr. 54(3), 537–550 (2009)CrossRef
30.
go back to reference P. Krejčí, K. Kuhnen, Inverse control of systems with hysteresis and creep. IEE Proc. Contr. Theor. Appl. 148(3), 185–192 (2001)CrossRef P. Krejčí, K. Kuhnen, Inverse control of systems with hysteresis and creep. IEE Proc. Contr. Theor. Appl. 148(3), 185–192 (2001)CrossRef
31.
go back to reference R. Iyer, X. Tan, P. Krishnaprasad, Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators. IEEE Trans. Automat. Contr. 50(6), 798–810 (2005)MathSciNetCrossRef R. Iyer, X. Tan, P. Krishnaprasad, Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators. IEEE Trans. Automat. Contr. 50(6), 798–810 (2005)MathSciNetCrossRef
Metadata
Title
Introduction: Smart Materials as Essential Base for Actuators in Micro/Nanopositioning
Authors
Micky Rakotondrabe
Mohammad Al Janaideh
Alex Bienaimé
Qingsong Xu
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6684-0_1