Skip to main content
Top
Published in:
Cover of the book

2024 | OriginalPaper | Chapter

Introduction to Biopolymers and Their Potential in the Textile Industry

Authors : Shumaila Kiran, Shahzaib, Sarosh Iqbal, Bushra Munir, Iram Hafiz

Published in: Biopolymers in the Textile Industry

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biopolymers are polymers obtained from some living organisms; therefore, they are recyclable and biocompatible; moreover, they have a variety of efficient groups permitting the resistor of the boundary through nanofillers and the multistate assembly. They discover usage in various manufacturing reaching from nutrition engineering to manufacturing, packing and biomedical industry. Biopolymers are capable materials due to their appearances, comparable profusion, biocompatibility and sole properties alike non-toxicity etc. have been used during many textile industrialized processes. They have been used as necessary agents, i.e., chitosan and smoothing representatives, i.e., fiber ethers, to permute the coloring process, which results in quickness and an extra uniform shade in the completed textiles. Biopolymers are actual much compulsory in the future as they are an illumination to lime and sustainable environment. They are biodegradable, renewable and their building produces less glasshouse air. This work will focus on a brief overview of biopolymers and their actual role in the fabric industry.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ahmad, N. H., Mustafa, S., & Che Man, Y. B. (2015). Microbial polysaccharides and their modification approaches: A review. International Journal of Food Properties, 18(2), 332–347.CrossRef Ahmad, N. H., Mustafa, S., & Che Man, Y. B. (2015). Microbial polysaccharides and their modification approaches: A review. International Journal of Food Properties, 18(2), 332–347.CrossRef
2.
go back to reference Alagarasan, D., Harikrishnan, A., Surendiran, M., Indira, K., Khalifa, A. S., & Elesawy, B. H. (2021). Synthesis and characterization of CuO nanoparticles and evaluation of their bactericidal and fungicidal activities in cotton fabrics. Applied Nanoscience, 1–10. Alagarasan, D., Harikrishnan, A., Surendiran, M., Indira, K., Khalifa, A. S., & Elesawy, B. H. (2021). Synthesis and characterization of CuO nanoparticles and evaluation of their bactericidal and fungicidal activities in cotton fabrics. Applied Nanoscience, 1–10.
3.
go back to reference Alves, V. D., Castelló, R., Ferreira, A. R., Costa, N., Fonseca, I. M., & Coelhoso, I. M. (2011). Barrier properties of carrageenan/pectin biodegradable composite films. Procedia Food Science, 1, 240–245.CrossRef Alves, V. D., Castelló, R., Ferreira, A. R., Costa, N., Fonseca, I. M., & Coelhoso, I. M. (2011). Barrier properties of carrageenan/pectin biodegradable composite films. Procedia Food Science, 1, 240–245.CrossRef
4.
go back to reference Anderson, A. J., & Dawes, E. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological reviews, 54(4), 450–472.PubMedPubMedCentralCrossRef Anderson, A. J., & Dawes, E. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological reviews, 54(4), 450–472.PubMedPubMedCentralCrossRef
5.
go back to reference Balasubramaniam, B., Prateek, Ranjan, S., Saraf, M., Kar, P., Singh, S. P., ... & Gupta, R. K. (2020). Antibacterial and antiviral functional materials: Chemistry and biological activity toward tackling COVID-19-like pandemics. ACS Pharmacology & Translational Science, 4(1), 8–54. Balasubramaniam, B., Prateek, Ranjan, S., Saraf, M., Kar, P., Singh, S. P., ... & Gupta, R. K. (2020). Antibacterial and antiviral functional materials: Chemistry and biological activity toward tackling COVID-19-like pandemics. ACS Pharmacology & Translational Science, 4(1), 8–54.
6.
go back to reference Basso, A., & Serban, S. (2019). Industrial applications of immobilized enzymes—A review. Molecular Catalysis, 479, 110607.CrossRef Basso, A., & Serban, S. (2019). Industrial applications of immobilized enzymes—A review. Molecular Catalysis, 479, 110607.CrossRef
7.
go back to reference Batista, R. A., Espitia, P. J. P., Quintans, J., & d. S. S., Freitas, M. M., Cerqueira, M. Â., Teixeira, J. A., & Cardoso, J. C. (2019). Hydrogel as an alternative structure for food packaging systems. Carbohydrate polymers, 205, 106–116.PubMedCrossRef Batista, R. A., Espitia, P. J. P., Quintans, J., & d. S. S., Freitas, M. M., Cerqueira, M. Â., Teixeira, J. A., & Cardoso, J. C. (2019). Hydrogel as an alternative structure for food packaging systems. Carbohydrate polymers, 205, 106–116.PubMedCrossRef
8.
go back to reference Berdan, V. Y., Klauser, P. C., & Wang, L. (2021). Covalent peptides and proteins for therapeutics. Bioorganic & Medicinal Chemistry, 29, 115896.CrossRef Berdan, V. Y., Klauser, P. C., & Wang, L. (2021). Covalent peptides and proteins for therapeutics. Bioorganic & Medicinal Chemistry, 29, 115896.CrossRef
9.
go back to reference Bertolino, V., Cavallaro, G., Milioto, S., & Lazzara, G. (2020). Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials. Carbohydrate polymers, 245, 116502.PubMedCrossRef Bertolino, V., Cavallaro, G., Milioto, S., & Lazzara, G. (2020). Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials. Carbohydrate polymers, 245, 116502.PubMedCrossRef
10.
go back to reference Biswas, B., Kumar, A., Kaur, R., Krishna, B. B., & Bhaskar, T. (2021). Catalytic hydrothermal liquefaction of alkali lignin over activated bio-char supported bimetallic catalyst. Bioresource Technology, 337, 125439. Biswas, B., Kumar, A., Kaur, R., Krishna, B. B., & Bhaskar, T. (2021). Catalytic hydrothermal liquefaction of alkali lignin over activated bio-char supported bimetallic catalyst. Bioresource Technology, 337, 125439.
11.
go back to reference Biswas, M. C., Jony, B., Nandy, P. K., Chowdhury, R. A., Halder, S., Kumar, D., Ramakrishna, S., Hassan, M., Ahsan, M. A., & Hoque, M. E. (2021). Recent advancement of biopolymers and their potential biomedical applications. Journal of Polymers and the Environment, 1–24. Biswas, M. C., Jony, B., Nandy, P. K., Chowdhury, R. A., Halder, S., Kumar, D., Ramakrishna, S., Hassan, M., Ahsan, M. A., & Hoque, M. E. (2021). Recent advancement of biopolymers and their potential biomedical applications. Journal of Polymers and the Environment, 1–24.
12.
go back to reference Brown, R. (2000). Social identity theory: Past achievements, current problems and future challenges. European Journal of Social Psychology, 30(6), 745–778. Brown, R. (2000). Social identity theory: Past achievements, current problems and future challenges. European Journal of Social Psychology, 30(6), 745–778.
13.
go back to reference Butola, B. S. (2019). Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. International Journal of Biological Macromolecules, 121, 905–912. Butola, B. S. (2019). Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. International Journal of Biological Macromolecules, 121, 905–912.
14.
go back to reference Callister, W. D., & Rethwisch, D. G. (2007). Materials science and engineering: an introduction (Vol. 7). John wiley & sons New York. Callister, W. D., & Rethwisch, D. G. (2007). Materials science and engineering: an introduction (Vol. 7). John wiley & sons New York.
15.
go back to reference Casalini, T., Rossi, F., Castrovinci, A., & Perale, G. (2019). A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Frontiers in Bioengineering and Biotechnology, 7, 259.PubMedPubMedCentralCrossRef Casalini, T., Rossi, F., Castrovinci, A., & Perale, G. (2019). A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Frontiers in Bioengineering and Biotechnology, 7, 259.PubMedPubMedCentralCrossRef
16.
go back to reference Chapman, J., Ismail, A. E., & Dinu, C. Z. (2018). Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts, 8(6), 238.CrossRef Chapman, J., Ismail, A. E., & Dinu, C. Z. (2018). Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts, 8(6), 238.CrossRef
17.
go back to reference Chen, Y. J. (2014). Bioplastics and their role in achieving global sustainability. Journal of Chemical and Pharmaceutical Research, 6(1), 226–231. Chen, Y. J. (2014). Bioplastics and their role in achieving global sustainability. Journal of Chemical and Pharmaceutical Research, 6(1), 226–231.
18.
go back to reference Chen, X., & Hearle, J. (2010). Structural hierarchy in textile materials: an overview. Modelling and Predicting Textile behaviour, 3–40. Chen, X., & Hearle, J. (2010). Structural hierarchy in textile materials: an overview. Modelling and Predicting Textile behaviour, 3–40.
19.
go back to reference Ciesielski, S., Pokoj, T., & Klimiuk, E. (2010). Cultivation-dependent and-independent characterization of microbial community producing polyhydroxyalkanoates from raw glycerol. Journal of Microbiology and Biotechnology, 20(5), 853–861.PubMedCrossRef Ciesielski, S., Pokoj, T., & Klimiuk, E. (2010). Cultivation-dependent and-independent characterization of microbial community producing polyhydroxyalkanoates from raw glycerol. Journal of Microbiology and Biotechnology, 20(5), 853–861.PubMedCrossRef
20.
go back to reference Dassanayake, R. S., Acharya, S., & Abidi, N. (2018). Biopolymer-based materials from polysaccharides: Properties, processing, characterization and sorption applications. Advanced Sorption Process Applications, 1–24. Dassanayake, R. S., Acharya, S., & Abidi, N. (2018). Biopolymer-based materials from polysaccharides: Properties, processing, characterization and sorption applications. Advanced Sorption Process Applications, 1–24.
21.
go back to reference Devaux, A., Kromann, P., & Ortiz, O. (2014). Potatoes for sustainable global food security. Potato Research, 57, 185–199. Devaux, A., Kromann, P., & Ortiz, O. (2014). Potatoes for sustainable global food security. Potato Research, 57, 185–199.
22.
go back to reference Eid, B. M., & Ibrahim, N. A. (2021). Recent developments in sustainable finishing of cellulosic textiles employing biotechnology. Journal of Cleaner Production, 284, 124701. Eid, B. M., & Ibrahim, N. A. (2021). Recent developments in sustainable finishing of cellulosic textiles employing biotechnology. Journal of Cleaner Production, 284, 124701.
23.
go back to reference Espevik, T., Otterlei, M., Skjåk-Braek, G., Ryan, L., Wright, S. D., & Sundan, A. (1993). The involvement of CD14 in stimulation of cytokine production by uronic acid polymers. European Journal of Immunology, 23(1), 255–261.PubMedCrossRef Espevik, T., Otterlei, M., Skjåk-Braek, G., Ryan, L., Wright, S. D., & Sundan, A. (1993). The involvement of CD14 in stimulation of cytokine production by uronic acid polymers. European Journal of Immunology, 23(1), 255–261.PubMedCrossRef
24.
go back to reference Farokhzad, O. C., & Langer, R. (2009). Impact of nanotechnology on drug delivery. ACS Nano, 3(1), 16–20.PubMedCrossRef Farokhzad, O. C., & Langer, R. (2009). Impact of nanotechnology on drug delivery. ACS Nano, 3(1), 16–20.PubMedCrossRef
25.
go back to reference Fernandes, M., Padrão, J., Ribeiro, A. I., Fernandes, R. D., Melro, L., Nicolau, T., Mehravani, B., Alves, C., Rodrigues, R., & Zille, A. (2022). Polysaccharides and metal nanoparticles for functional textiles: A review. Nanomaterials, 12(6), 1006.PubMedPubMedCentralCrossRef Fernandes, M., Padrão, J., Ribeiro, A. I., Fernandes, R. D., Melro, L., Nicolau, T., Mehravani, B., Alves, C., Rodrigues, R., & Zille, A. (2022). Polysaccharides and metal nanoparticles for functional textiles: A review. Nanomaterials, 12(6), 1006.PubMedPubMedCentralCrossRef
26.
go back to reference Garcia-Ochoa, F., Castro, E. G., & Santos, V. (2000). Oxygen transfer and uptake rates during xanthan gum production. Enzyme and Microbial Technology, 27(9), 680–690.PubMedCrossRef Garcia-Ochoa, F., Castro, E. G., & Santos, V. (2000). Oxygen transfer and uptake rates during xanthan gum production. Enzyme and Microbial Technology, 27(9), 680–690.PubMedCrossRef
27.
go back to reference Giacomelli, V. S. (2005). Morfologia, propriedades termicas e mecanicas de filmes de proteina isolada de soja/dodecilsulfato de sodio/policaprolactona-triol. Giacomelli, V. S. (2005). Morfologia, propriedades termicas e mecanicas de filmes de proteina isolada de soja/dodecilsulfato de sodio/policaprolactona-triol.
28.
go back to reference Gomes, L., Paschoalin, V., & Del Aguila, E. (2017). Chitosan nanoparticles: Production, physicochemical characteristics and nutraceutical applications. Rev. Virtual Quim, 9(1), 387–409.CrossRef Gomes, L., Paschoalin, V., & Del Aguila, E. (2017). Chitosan nanoparticles: Production, physicochemical characteristics and nutraceutical applications. Rev. Virtual Quim, 9(1), 387–409.CrossRef
29.
go back to reference Gonçalves, C., Gonçalves, I. C., Magalhães, F. D., & Pinto, A. M. (2017). Poly (lactic acid) composites containing carbon-based nanomaterials: A review. Polymers, 9(7), 269.PubMedPubMedCentralCrossRef Gonçalves, C., Gonçalves, I. C., Magalhães, F. D., & Pinto, A. M. (2017). Poly (lactic acid) composites containing carbon-based nanomaterials: A review. Polymers, 9(7), 269.PubMedPubMedCentralCrossRef
30.
go back to reference Gopi, S., Balakrishnan, P., Chandradhara, D., Poovathankandy, D., & Thomas, S. (2019). General scenarios of cellulose and its use in the biomedical field. Materials Today Chemistry, 13, 59–78.CrossRef Gopi, S., Balakrishnan, P., Chandradhara, D., Poovathankandy, D., & Thomas, S. (2019). General scenarios of cellulose and its use in the biomedical field. Materials Today Chemistry, 13, 59–78.CrossRef
31.
go back to reference Gowthaman, N., Lim, H., Sreeraj, T., Amalraj, A., & Gopi, S. (2021). Advantages of biopolymers over synthetic polymers: social, economic, and environmental aspects. In Biopolymers and Their Industrial Applications (pp. 351–372). Elsevier. Gowthaman, N., Lim, H., Sreeraj, T., Amalraj, A., & Gopi, S. (2021). Advantages of biopolymers over synthetic polymers: social, economic, and environmental aspects. In Biopolymers and Their Industrial Applications (pp. 351–372). Elsevier.
32.
go back to reference Helleday, T., Petermann, E., Lundin, C., Hodgson, B., & Sharma, R. A. (2008). DNA repair pathways as targets for cancer therapy. Nature Reviews Cancer, 8(3), 193–204.PubMedCrossRef Helleday, T., Petermann, E., Lundin, C., Hodgson, B., & Sharma, R. A. (2008). DNA repair pathways as targets for cancer therapy. Nature Reviews Cancer, 8(3), 193–204.PubMedCrossRef
33.
go back to reference Hoang, T. C., Black, M. C., Knuteson, S. L., & Roberts, A. P. (2019). Environmental pollution, management, and sustainable development: Strategies for Vietnam and other developing countries. In (Vol. 63, pp. 433–436): Springer. Hoang, T. C., Black, M. C., Knuteson, S. L., & Roberts, A. P. (2019). Environmental pollution, management, and sustainable development: Strategies for Vietnam and other developing countries. In (Vol. 63, pp. 433–436): Springer.
34.
go back to reference Hufenus, R., Yan, Y., Dauner, M., & Kikutani, T. (2020). Melt-spun fibers for textile applications. Materials, 13(19), 4298. Hufenus, R., Yan, Y., Dauner, M., & Kikutani, T. (2020). Melt-spun fibers for textile applications. Materials, 13(19), 4298.
35.
go back to reference Jahandideh, A., Ashkani, M., & Moini, N. (2021). Biopolymers in textile industries. In Biopolymers and Their Industrial Applications (pp. 193–218). Elsevier. Jahandideh, A., Ashkani, M., & Moini, N. (2021). Biopolymers in textile industries. In Biopolymers and Their Industrial Applications (pp. 193–218). Elsevier.
36.
go back to reference Janjarasskul, T., Tananuwong, K., Phupoksakul, T., & Thaiphanit, S. (2020). Fast dissolving, hermetically sealable, edible whey protein isolate-based films for instant food and/or dry ingredient pouches. LWT, 134, 110102.CrossRef Janjarasskul, T., Tananuwong, K., Phupoksakul, T., & Thaiphanit, S. (2020). Fast dissolving, hermetically sealable, edible whey protein isolate-based films for instant food and/or dry ingredient pouches. LWT, 134, 110102.CrossRef
37.
go back to reference Javaid, R., & Qazi, U. Y. (2019). Catalytic oxidation process for the degradation of synthetic dyes: An overview. International Journal of Environmental Research and Public Health, 16(11), 2066. Javaid, R., & Qazi, U. Y. (2019). Catalytic oxidation process for the degradation of synthetic dyes: An overview. International Journal of Environmental Research and Public Health, 16(11), 2066.
38.
go back to reference Jem, K. J., & Tan, B. (2020). The development and challenges of poly (lactic acid) and poly (glycolic acid). Advanced Industrial and Engineering Polymer Research, 3(2), 60–70.CrossRef Jem, K. J., & Tan, B. (2020). The development and challenges of poly (lactic acid) and poly (glycolic acid). Advanced Industrial and Engineering Polymer Research, 3(2), 60–70.CrossRef
39.
go back to reference Jo, W. K., & Tayade, R. J. (2014). New generation energy-efficient light source for photocatalysis: LEDs for environmental applications. Industrial & Engineering Chemistry Research, 53(6), 2073–2084. Jo, W. K., & Tayade, R. J. (2014). New generation energy-efficient light source for photocatalysis: LEDs for environmental applications. Industrial & Engineering Chemistry Research, 53(6), 2073–2084.
40.
go back to reference Johann To Berens, P., & Molinier, J. (2020). Formation and recognition of UV-induced DNA damage within genome complexity. International Journal of Molecular Sciences, 21(18), 6689. Johann To Berens, P., & Molinier, J. (2020). Formation and recognition of UV-induced DNA damage within genome complexity. International Journal of Molecular Sciences, 21(18), 6689.
41.
go back to reference Kasiri, M. B., & Safapour, S. (2014). Natural dyes and antimicrobials for green treatment of textiles. Environmental Chemistry Letters, 12(1), 1–13. Kasiri, M. B., & Safapour, S. (2014). Natural dyes and antimicrobials for green treatment of textiles. Environmental Chemistry Letters, 12(1), 1–13.
42.
go back to reference Kikutani, T., Tamura, F., Nishiwaki, K., Kodama, M., Suda, M., Fukui, T., Takahashi, N., Yoshida, M., Akagawa, Y., Kimura, M. (2009). Oral motor function and masticatory performance in the community-dwelling elderly. Odontology, 97, 38–42. Kikutani, T., Tamura, F., Nishiwaki, K., Kodama, M., Suda, M., Fukui, T., Takahashi, N., Yoshida, M., Akagawa, Y., Kimura, M. (2009). Oral motor function and masticatory performance in the community-dwelling elderly. Odontology, 97, 38–42.
43.
44.
go back to reference Kopf, S., Åkesson, D., & Skrifvars, M. (2023). Textile Fiber Production of Biopolymers–A Review of Spinning Techniques for Polyhydroxyalkanoates in Biomedical Applications. Polymer Reviews, 63(1), 200–245.CrossRef Kopf, S., Åkesson, D., & Skrifvars, M. (2023). Textile Fiber Production of Biopolymers–A Review of Spinning Techniques for Polyhydroxyalkanoates in Biomedical Applications. Polymer Reviews, 63(1), 200–245.CrossRef
45.
go back to reference Li, Z., Yang, J., & Loh, X. J. (2016). Polyhydroxyalkanoates: Opening doors for a sustainable future. NPG Asia Materials, 8(4), e265–e265.CrossRef Li, Z., Yang, J., & Loh, X. J. (2016). Polyhydroxyalkanoates: Opening doors for a sustainable future. NPG Asia Materials, 8(4), e265–e265.CrossRef
46.
go back to reference Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A. (2010). Polymers for drug delivery systems. Annual Review of Chemical and Biomolecular Engineering, 1, 149–173.PubMedPubMedCentralCrossRef Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A. (2010). Polymers for drug delivery systems. Annual Review of Chemical and Biomolecular Engineering, 1, 149–173.PubMedPubMedCentralCrossRef
47.
go back to reference Liu, Y., Ahmed, S., Sameen, D. E., Wang, Y., Lu, R., Dai, J., Li, S., & Qin, W. (2021). A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends in Food Science & Technology, 112, 532–546.CrossRef Liu, Y., Ahmed, S., Sameen, D. E., Wang, Y., Lu, R., Dai, J., Li, S., & Qin, W. (2021). A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends in Food Science & Technology, 112, 532–546.CrossRef
48.
go back to reference Liu, Y., Yang, Y., Zhang, C., Huang, F., Wang, F., Yuan, J., ... & Liu, L. (2020). Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China Life Sciences, 63, 364–374. Liu, Y., Yang, Y., Zhang, C., Huang, F., Wang, F., Yuan, J., ... & Liu, L. (2020). Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China Life Sciences, 63, 364–374.
49.
go back to reference Lochhead, R. (2017). Chapter 3-Basic Physical Sciences for the Formulation of Cosmetic Products. Cosmetic Science and Technology. In: Amsterdam: Elsevier. Lochhead, R. (2017). Chapter 3-Basic Physical Sciences for the Formulation of Cosmetic Products. Cosmetic Science and Technology. In: Amsterdam: Elsevier.
50.
go back to reference Mahmood, H., Moniruzzaman, M., Iqbal, T., & Khan, M. J. (2019). Recent advances in the pretreatment of lignocellulosic biomass for biofuels and value-added products. Current Opinion in Green and Sustainable Chemistry, 20, 18–24. Mahmood, H., Moniruzzaman, M., Iqbal, T., & Khan, M. J. (2019). Recent advances in the pretreatment of lignocellulosic biomass for biofuels and value-added products. Current Opinion in Green and Sustainable Chemistry, 20, 18–24.
51.
go back to reference Mohan, C. E. (2014). Manufacture and mechanical testing of thin film composites composed of poly-lactic acid and nanocrystalline cellulose. Mohan, C. E. (2014). Manufacture and mechanical testing of thin film composites composed of poly-lactic acid and nanocrystalline cellulose.
52.
go back to reference Moohan, J., Stewart, S. A., Espinosa, E., Rosal, A., Rodríguez, A., Larrañeta, E., Donnelly, R. F., & Domínguez-Robles, J. (2019). Cellulose nanofibers and other biopolymers for biomedical applications. A review. Applied Sciences, 10(1), 65. Moohan, J., Stewart, S. A., Espinosa, E., Rosal, A., Rodríguez, A., Larrañeta, E., Donnelly, R. F., & Domínguez-Robles, J. (2019). Cellulose nanofibers and other biopolymers for biomedical applications. A review. Applied Sciences, 10(1), 65.
53.
go back to reference Mpofu, N. S., Mwasiagi, J. I., Nkiwane, L. C., & Njuguna, D. (2019). Use of regression to study the effect of fabric parameters on the adhesion of 3D printed PLA polymer onto woven fabrics. Fashion and Textiles, 6, 1–12. Mpofu, N. S., Mwasiagi, J. I., Nkiwane, L. C., & Njuguna, D. (2019). Use of regression to study the effect of fabric parameters on the adhesion of 3D printed PLA polymer onto woven fabrics. Fashion and Textiles, 6, 1–12.
54.
go back to reference Mukherjee, P. (2019). Bioactive phytocomponents and their analysis. Quality Control and Evaluation of Herbal Drugs, 237–328. Mukherjee, P. (2019). Bioactive phytocomponents and their analysis. Quality Control and Evaluation of Herbal Drugs, 237–328.
55.
go back to reference Muller, J., González-Martínez, C., & Chiralt, A. (2017). Combination of poly (lactic) acid and starch for biodegradable food packaging. Materials, 10(8), 952.PubMedPubMedCentralCrossRef Muller, J., González-Martínez, C., & Chiralt, A. (2017). Combination of poly (lactic) acid and starch for biodegradable food packaging. Materials, 10(8), 952.PubMedPubMedCentralCrossRef
56.
go back to reference Mura, P. (2020). Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: A review. International Journal of Pharmaceutics, 579, 119181.PubMedCrossRef Mura, P. (2020). Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: A review. International Journal of Pharmaceutics, 579, 119181.PubMedCrossRef
57.
go back to reference Muzaffar, S., Abbas, M., Siddiqua, U. H., Arshad, M., Tufail, A., Ahsan, M.,.. & Iqbal, M. (2021). Enhanced mechanical, UV protection and antimicrobial properties of cotton fabric employing nanochitosan and polyurethane based finishing. Journal of Materials Research and Technology, 11, 946–956. Muzaffar, S., Abbas, M., Siddiqua, U. H., Arshad, M., Tufail, A., Ahsan, M.,.. & Iqbal, M. (2021). Enhanced mechanical, UV protection and antimicrobial properties of cotton fabric employing nanochitosan and polyurethane based finishing. Journal of Materials Research and Technology, 11, 946–956.
58.
go back to reference Nair, A. B., Sivasubramanian, P., Balakrishnan, P., Ajith Kumar, K. A. N., & Sreekala, M. S. (2013). Environmental effects, biodegradation, and life cycle analysis of fully biodegradable “green” composites. Polymer Composites, 515–568. Nair, A. B., Sivasubramanian, P., Balakrishnan, P., Ajith Kumar, K. A. N., & Sreekala, M. S. (2013). Environmental effects, biodegradation, and life cycle analysis of fully biodegradable “green” composites. Polymer Composites, 515–568.
59.
go back to reference Nasrollahzadeh, M. (2021). Biopolymer-Based Metal Nanoparticle Chemistry for Sustainable Applications: Volume 2: Applications. Elsevier. Nasrollahzadeh, M. (2021). Biopolymer-Based Metal Nanoparticle Chemistry for Sustainable Applications: Volume 2: Applications. Elsevier.
60.
go back to reference Nejatian, M., Abbasi, S., & Azarikia, F. (2020). Gum Tragacanth: Structure, characteristics and applications in foods. International Journal of Biological Macromolecules, 160, 846–860.PubMedCrossRef Nejatian, M., Abbasi, S., & Azarikia, F. (2020). Gum Tragacanth: Structure, characteristics and applications in foods. International Journal of Biological Macromolecules, 160, 846–860.PubMedCrossRef
61.
go back to reference Nogueira, G. F., Oliveira, R. A., & d., Velasco, J. I., & Fakhouri, F. M. (2020). Methods of incorporating plant-derived bioactive compounds into films made with agro-based polymers for application as food packaging: A brief review. Polymers, 12(11), 2518.PubMedPubMedCentralCrossRef Nogueira, G. F., Oliveira, R. A., & d., Velasco, J. I., & Fakhouri, F. M. (2020). Methods of incorporating plant-derived bioactive compounds into films made with agro-based polymers for application as food packaging: A brief review. Polymers, 12(11), 2518.PubMedPubMedCentralCrossRef
62.
go back to reference Ogunsona, E., Ojogbo, E., & Mekonnen, T. (2018). Advanced material applications of starch and its derivatives. European Polymer Journal, 108, 570–581.CrossRef Ogunsona, E., Ojogbo, E., & Mekonnen, T. (2018). Advanced material applications of starch and its derivatives. European Polymer Journal, 108, 570–581.CrossRef
63.
go back to reference Paes, S. S., Yakimets, I., & Mitchell, J. R. (2008). Influence of gelatinization process on functional properties of cassava starch films. Food Hydrocolloids, 22(5), 788–797.CrossRef Paes, S. S., Yakimets, I., & Mitchell, J. R. (2008). Influence of gelatinization process on functional properties of cassava starch films. Food Hydrocolloids, 22(5), 788–797.CrossRef
64.
go back to reference Pan, Y., Farmahini-Farahani, M., O’Hearn, P., Xiao, H., & Ocampo, H. (2016). An overview of bio-based polymers for packaging materials. J. Bioresources and Bioproduction, 1(3), 106–113. Pan, Y., Farmahini-Farahani, M., O’Hearn, P., Xiao, H., & Ocampo, H. (2016). An overview of bio-based polymers for packaging materials. J. Bioresources and Bioproduction, 1(3), 106–113.
65.
go back to reference Parmar, D., Sugiono, E., Raja, S., & Rueping, M. (2014). Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chemical Reviews, 114(18), 9047–9153. Parmar, D., Sugiono, E., Raja, S., & Rueping, M. (2014). Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chemical Reviews, 114(18), 9047–9153.
66.
go back to reference Pasricha, A., & Greeninger, R. (2018). Exploration of 3D printing to create zero-waste sustainable fashion notions and jewelry. Fashion and Textiles, 5(1), 1–18. Pasricha, A., & Greeninger, R. (2018). Exploration of 3D printing to create zero-waste sustainable fashion notions and jewelry. Fashion and Textiles, 5(1), 1–18.
67.
go back to reference Patti, A., & Acierno, D. (2022). Towards the sustainability of the plastic industry through biopolymers: Properties and potential applications to the textiles world. Polymers, 14(4), 692.PubMedPubMedCentralCrossRef Patti, A., & Acierno, D. (2022). Towards the sustainability of the plastic industry through biopolymers: Properties and potential applications to the textiles world. Polymers, 14(4), 692.PubMedPubMedCentralCrossRef
68.
go back to reference Pawar, P., & Purwar, A. H. (2013). Biodegradable polymers in food packaging. American Journal of Engineering Research, 2(5), 151–164. Pawar, P., & Purwar, A. H. (2013). Biodegradable polymers in food packaging. American Journal of Engineering Research, 2(5), 151–164.
69.
go back to reference Philip, S., Keshavarz, T., & Roy, I. (2007). Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 82(3), 233–247.CrossRef Philip, S., Keshavarz, T., & Roy, I. (2007). Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 82(3), 233–247.CrossRef
70.
go back to reference Plackett, D., Letchford, K., Jackson, J., & Burt, H. (2014). A review of nanocellulose as a novel vehicle for drug delivery. Nordic Pulp & Paper Research Journal, 29(1), 105–118.CrossRef Plackett, D., Letchford, K., Jackson, J., & Burt, H. (2014). A review of nanocellulose as a novel vehicle for drug delivery. Nordic Pulp & Paper Research Journal, 29(1), 105–118.CrossRef
71.
go back to reference Porta, R., Sabbah, M., & Di Pierro, P. (2020). Biopolymers as food packaging materials. In (Vol. 21, pp. 4942): MDPI. Porta, R., Sabbah, M., & Di Pierro, P. (2020). Biopolymers as food packaging materials. In (Vol. 21, pp. 4942): MDPI.
72.
go back to reference Prabaharan, M., & Mano, J. (2004). Chitosan-based particles as controlled drug delivery systems. Drug Delivery, 12(1), 41–57.CrossRef Prabaharan, M., & Mano, J. (2004). Chitosan-based particles as controlled drug delivery systems. Drug Delivery, 12(1), 41–57.CrossRef
73.
go back to reference Qin, Y. (2016). A brief description of textile fibers. Medical Textile Materials, 3, 23–42.CrossRef Qin, Y. (2016). A brief description of textile fibers. Medical Textile Materials, 3, 23–42.CrossRef
74.
go back to reference Radhakrishnan, S., Krishnamoorthy, K., Sekar, C., Wilson, J., & Kim, S. J. (2014). A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Applied Catalysis B: Environmental, 148, 22–28. Radhakrishnan, S., Krishnamoorthy, K., Sekar, C., Wilson, J., & Kim, S. J. (2014). A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Applied Catalysis B: Environmental, 148, 22–28.
75.
go back to reference Rahman, M. Z., Rahman, M., Mahbub, T., Ashiquzzaman, M., Sagadevan, S., & Hoque, M. E. (2023). Advanced biopolymers for automobile and aviation engineering applications. Journal of Polymer Research, 30(3), 106.CrossRef Rahman, M. Z., Rahman, M., Mahbub, T., Ashiquzzaman, M., Sagadevan, S., & Hoque, M. E. (2023). Advanced biopolymers for automobile and aviation engineering applications. Journal of Polymer Research, 30(3), 106.CrossRef
76.
go back to reference Reddy, R. L., Reddy, V. S., & Gupta, G. A. (2013). Study of bio-plastics as green and sustainable alternative to plastics. International Journal of Emerging Technology and Advanced Engineering, 3(5), 76–81. Reddy, R. L., Reddy, V. S., & Gupta, G. A. (2013). Study of bio-plastics as green and sustainable alternative to plastics. International Journal of Emerging Technology and Advanced Engineering, 3(5), 76–81.
77.
go back to reference Rendón-Villalobos, R., Ortíz-Sánchez, A., Tovar-Sánchez, E., & Flores-Huicochea, E. (2016). The role of biopolymers in obtaining environmentally friendly materials. Composites from Renewable and Sustainable Materials, 151. Rendón-Villalobos, R., Ortíz-Sánchez, A., Tovar-Sánchez, E., & Flores-Huicochea, E. (2016). The role of biopolymers in obtaining environmentally friendly materials. Composites from Renewable and Sustainable Materials, 151.
78.
go back to reference Roselet, S. L., & Premakumari, J. (2015). Studies on Metformin Hydrochloride and α-Cyclodextrin Inclusion Complexes. Green Chemistry & Technology Letters, 1, 48–53 Roselet, S. L., & Premakumari, J. (2015). Studies on Metformin Hydrochloride and α-Cyclodextrin Inclusion Complexes. Green Chemistry & Technology Letters, 1, 48–53
79.
go back to reference Rubino, C., Bonet Aracil, M., Gisbert-Payá, J., Liuzzi, S., Stefanizzi, P., Zamorano Cantó, M., & Martellotta, F. (2019). Composite eco-friendly sound absorbing materials made of recycled textile waste and biopolymers. Materials, 12(23), 4020.PubMedPubMedCentralCrossRef Rubino, C., Bonet Aracil, M., Gisbert-Payá, J., Liuzzi, S., Stefanizzi, P., Zamorano Cantó, M., & Martellotta, F. (2019). Composite eco-friendly sound absorbing materials made of recycled textile waste and biopolymers. Materials, 12(23), 4020.PubMedPubMedCentralCrossRef
80.
go back to reference Ruiz-Mirazo, K., Briones, C., & de la Escosura, A. (2014). Prebiotic systems chemistry: New perspectives for the origins of life. Chemical Reviews, 114(1), 285–366.PubMedCrossRef Ruiz-Mirazo, K., Briones, C., & de la Escosura, A. (2014). Prebiotic systems chemistry: New perspectives for the origins of life. Chemical Reviews, 114(1), 285–366.PubMedCrossRef
81.
go back to reference Salimpour Abkenar, S., & Mohammad Ali Malek, R. (2021). Modification of Silk Yarn with β‐Cyclodextrin Nanoparticles: Preparation, Characterization, and Natural Dyeing Properties. Starch‐Stärke, 73(7-8), 2000209. Salimpour Abkenar, S., & Mohammad Ali Malek, R. (2021). Modification of Silk Yarn with β‐Cyclodextrin Nanoparticles: Preparation, Characterization, and Natural Dyeing Properties. Starch‐Stärke, 73(7-8), 2000209.
82.
go back to reference Samrot, A. V., Sean, T. C., Kudaiyappan, T., Bisyarah, U., Mirarmandi, A., Faradjeva, E., Abubakar, A., Ali, H. H., Angalene, J. L. A., & Kumar, S. S. (2020). Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. International Journal of Biological Macromolecules, 165, 3088–3105.PubMedCrossRef Samrot, A. V., Sean, T. C., Kudaiyappan, T., Bisyarah, U., Mirarmandi, A., Faradjeva, E., Abubakar, A., Ali, H. H., Angalene, J. L. A., & Kumar, S. S. (2020). Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. International Journal of Biological Macromolecules, 165, 3088–3105.PubMedCrossRef
83.
go back to reference Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., & Lin, C. T. (2017). A review of clustering techniques and developments. Neurocomputing, 267, 664–681. Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., & Lin, C. T. (2017). A review of clustering techniques and developments. Neurocomputing, 267, 664–681.
84.
go back to reference Shawky, H. A. (2009). Synthesis of ion‐imprinting chitosan/PVA crosslinked membrane for selective removal of Ag (I). Journal of Applied Polymer Science, 114(5), 2608–2615. Shawky, H. A. (2009). Synthesis of ion‐imprinting chitosan/PVA crosslinked membrane for selective removal of Ag (I). Journal of Applied Polymer Science, 114(5), 2608–2615.
85.
go back to reference Shirvan, A. R., Shakeri, M., & Bashari, A. (2019). Recent advances in application of chitosan and its derivatives in functional finishing of textiles. The Impact and Prospects of Green Chemistry for Textile Technology, 107–133. Shirvan, A. R., Shakeri, M., & Bashari, A. (2019). Recent advances in application of chitosan and its derivatives in functional finishing of textiles. The Impact and Prospects of Green Chemistry for Textile Technology, 107–133.
86.
go back to reference Siembida-Lösch, B., Anderson, W. B., Wang, Y. M., Bonsteel, J., & Huck, P. M. (2015). Effect of ozone on biopolymers in biofiltration and ultrafiltration processes. Water Research, 70, 224–234.PubMedCrossRef Siembida-Lösch, B., Anderson, W. B., Wang, Y. M., Bonsteel, J., & Huck, P. M. (2015). Effect of ozone on biopolymers in biofiltration and ultrafiltration processes. Water Research, 70, 224–234.PubMedCrossRef
87.
go back to reference da Silva, L. R., de Carvalho, C. W. P., Velasco, J. I., & Fakhouri, F. M. (2020). Extraction and characterization of starches from pigmented rice. International Journal of Biological Macromolecules, 156, 485–493.PubMedCrossRef da Silva, L. R., de Carvalho, C. W. P., Velasco, J. I., & Fakhouri, F. M. (2020). Extraction and characterization of starches from pigmented rice. International Journal of Biological Macromolecules, 156, 485–493.PubMedCrossRef
88.
go back to reference Silva, J. A., Tobella, L. M., Becerra, J., Godoy, F., & Martínez, M. A. (2007). Biosynthesis of poly-β-hydroxyalkanoate by Brevundimonas vesicularis LMG P-23615 and Sphingopyxis macrogoltabida LMG 17324 using acid-hydrolyzed sawdust as carbon source. Journal of Bioscience and Bioengineering, 103(6), 542–546.PubMedCrossRef Silva, J. A., Tobella, L. M., Becerra, J., Godoy, F., & Martínez, M. A. (2007). Biosynthesis of poly-β-hydroxyalkanoate by Brevundimonas vesicularis LMG P-23615 and Sphingopyxis macrogoltabida LMG 17324 using acid-hydrolyzed sawdust as carbon source. Journal of Bioscience and Bioengineering, 103(6), 542–546.PubMedCrossRef
89.
go back to reference Singhvi, M., & Gokhale, D. (2013). Biomass to biodegradable polymer (PLA). Rsc Advances, 3(33), 13558–13568.CrossRef Singhvi, M., & Gokhale, D. (2013). Biomass to biodegradable polymer (PLA). Rsc Advances, 3(33), 13558–13568.CrossRef
90.
go back to reference Smolen, V. F. (1978). Bioavailability and pharmacokinetic analysis of drug responding systems. Annual Review of Pharmacology and Toxicology, 18(1), 495–522.PubMedCrossRef Smolen, V. F. (1978). Bioavailability and pharmacokinetic analysis of drug responding systems. Annual Review of Pharmacology and Toxicology, 18(1), 495–522.PubMedCrossRef
91.
go back to reference Sohn, Y. J., Kim, H. T., Baritugo, K. A., Jo, S. Y., Song, H. M., Park, S. Y., Park, S. K., Pyo, J., Cha, H. G., & Kim, H. (2020). Recent advances in sustainable plastic upcycling and biopolymers. Biotechnology Journal, 15(6), 1900489.CrossRef Sohn, Y. J., Kim, H. T., Baritugo, K. A., Jo, S. Y., Song, H. M., Park, S. Y., Park, S. K., Pyo, J., Cha, H. G., & Kim, H. (2020). Recent advances in sustainable plastic upcycling and biopolymers. Biotechnology Journal, 15(6), 1900489.CrossRef
92.
go back to reference Soldo, A., Miletić, M., & Auad, M. L. (2020). Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Scientific Reports, 10(1), 267.PubMedPubMedCentralCrossRef Soldo, A., Miletić, M., & Auad, M. L. (2020). Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Scientific Reports, 10(1), 267.PubMedPubMedCentralCrossRef
93.
go back to reference Song, J., Winkeljann, B., & Lieleg, O. (2020). Biopolymer-based coatings: Promising strategies to improve the biocompatibility and functionality of materials used in biomedical engineering. Advanced Materials Interfaces, 7(17), 2000850.CrossRef Song, J., Winkeljann, B., & Lieleg, O. (2020). Biopolymer-based coatings: Promising strategies to improve the biocompatibility and functionality of materials used in biomedical engineering. Advanced Materials Interfaces, 7(17), 2000850.CrossRef
94.
go back to reference Stading, M., Rindlav-Westling, Å., & Gatenholm, P. (2001). Humidity-induced structural transitions in amylose and amylopectin films. Carbohydrate polymers, 45(3), 209–217.CrossRef Stading, M., Rindlav-Westling, Å., & Gatenholm, P. (2001). Humidity-induced structural transitions in amylose and amylopectin films. Carbohydrate polymers, 45(3), 209–217.CrossRef
95.
go back to reference Storz, H. (2013). Bio-based plastics: status, challenges and trends. Storz, H. (2013). Bio-based plastics: status, challenges and trends.
96.
go back to reference Sworn, G. (2021). Xanthan gum. In Handbook of hydrocolloids (pp. 833–853). Elsevier. Sworn, G. (2021). Xanthan gum. In Handbook of hydrocolloids (pp. 833–853). Elsevier.
97.
go back to reference Tabari, M. (2017). Investigation of carboxymethyl cellulose (CMC) on mechanical properties of cold water fish gelatin biodegradable edible films. Foods, 6(6), 41.PubMedPubMedCentralCrossRef Tabari, M. (2017). Investigation of carboxymethyl cellulose (CMC) on mechanical properties of cold water fish gelatin biodegradable edible films. Foods, 6(6), 41.PubMedPubMedCentralCrossRef
98.
go back to reference Tarique, J., Sapuan, S., Khalina, A., Sherwani, S., Yusuf, J., & Ilyas, R. (2021). Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. Journal of Materials Research and Technology, 13, 1191–1219.CrossRef Tarique, J., Sapuan, S., Khalina, A., Sherwani, S., Yusuf, J., & Ilyas, R. (2021). Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. Journal of Materials Research and Technology, 13, 1191–1219.CrossRef
99.
go back to reference Tarrahi, R., Fathi, Z., Seydibeyoğlu, M. Ö., Doustkhah, E., & Khataee, A. (2020). Polyhydroxyalkanoates (PHA): From production to nanoarchitecture. International Journal of Biological Macromolecules, 146, 596–619.PubMedCrossRef Tarrahi, R., Fathi, Z., Seydibeyoğlu, M. Ö., Doustkhah, E., & Khataee, A. (2020). Polyhydroxyalkanoates (PHA): From production to nanoarchitecture. International Journal of Biological Macromolecules, 146, 596–619.PubMedCrossRef
100.
go back to reference Tharanathan, R. (2003). Biodegradable films and composite coatings: Past, present and future. Trends in Food Science & Technology, 14(3), 71–78.CrossRef Tharanathan, R. (2003). Biodegradable films and composite coatings: Past, present and future. Trends in Food Science & Technology, 14(3), 71–78.CrossRef
101.
go back to reference Tobler-Rohr, M. I. (2011). Handbook of Sustainable Textile Production. Elsevier.CrossRef Tobler-Rohr, M. I. (2011). Handbook of Sustainable Textile Production. Elsevier.CrossRef
102.
go back to reference Torres‐Giner, S., Figueroa‐Lopez, K. J., Melendez‐Rodriguez, B., Prieto, C., Pardo‐Figuerez, M., & Lagaron, J. M. (2021). Emerging trends in biopolymers for food packaging. Sustainable Food Packaging Technology, 1–33. Torres‐Giner, S., Figueroa‐Lopez, K. J., Melendez‐Rodriguez, B., Prieto, C., Pardo‐Figuerez, M., & Lagaron, J. M. (2021). Emerging trends in biopolymers for food packaging. Sustainable Food Packaging Technology, 1–33.
103.
go back to reference Udayakumar, G. P., Muthusamy, S., Selvaganesh, B., Sivarajasekar, N., Rambabu, K., Banat, F., Sivamani, S., Sivakumar, N., Hosseini-Bandegharaei, A., & Show, P. L. (2021). Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries. Journal of Environmental Chemical Engineering, 9(4), 105322.CrossRef Udayakumar, G. P., Muthusamy, S., Selvaganesh, B., Sivarajasekar, N., Rambabu, K., Banat, F., Sivamani, S., Sivakumar, N., Hosseini-Bandegharaei, A., & Show, P. L. (2021). Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries. Journal of Environmental Chemical Engineering, 9(4), 105322.CrossRef
104.
go back to reference Vakili, M., Deng, S., Cagnetta, G., Wang, W., Meng, P., Liu, D., & Yu, G. (2019). Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. Separation and Purification Technology, 224, 373–387. Vakili, M., Deng, S., Cagnetta, G., Wang, W., Meng, P., Liu, D., & Yu, G. (2019). Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. Separation and Purification Technology, 224, 373–387.
105.
go back to reference Van Vlierberghe, S., Graulus, G.-J., Samal, S. K., Van Nieuwenhove, I., & Dubruel, P. (2014). Porous hydrogel biomedical foam scaffolds for tissue repair. In Biomedical Foams for Tissue Engineering Applications (pp. 335–390). Elsevier. Van Vlierberghe, S., Graulus, G.-J., Samal, S. K., Van Nieuwenhove, I., & Dubruel, P. (2014). Porous hydrogel biomedical foam scaffolds for tissue repair. In Biomedical Foams for Tissue Engineering Applications (pp. 335–390). Elsevier.
106.
go back to reference Vargas, M., Chiralt, A., Albors, A., & González-Martínez, C. (2009). Effect of chitosan-based edible coatings applied by vacuum impregnation on quality preservation of fresh-cut carrot. Postharvest Biology and Technology, 51(2), 263–271.CrossRef Vargas, M., Chiralt, A., Albors, A., & González-Martínez, C. (2009). Effect of chitosan-based edible coatings applied by vacuum impregnation on quality preservation of fresh-cut carrot. Postharvest Biology and Technology, 51(2), 263–271.CrossRef
107.
go back to reference Wilce, M. C., Aguilar, M.-I., & Hearn, M. T. (1995). Physicochemical basis of amino acid hydrophobicity scales: Evaluation of four new scales of amino acid hydrophobicity coefficients derived from RP-HPLC of peptides. Analytical Chemistry, 67(7), 1210–1219.CrossRef Wilce, M. C., Aguilar, M.-I., & Hearn, M. T. (1995). Physicochemical basis of amino acid hydrophobicity scales: Evaluation of four new scales of amino acid hydrophobicity coefficients derived from RP-HPLC of peptides. Analytical Chemistry, 67(7), 1210–1219.CrossRef
108.
go back to reference Wu, Q., Therriault, D., & Heuzey, M.-C. (2018). Processing and properties of chitosan inks for 3D printing of hydrogel microstructures. ACS Biomaterials Science & Engineering, 4(7), 2643–2652.CrossRef Wu, Q., Therriault, D., & Heuzey, M.-C. (2018). Processing and properties of chitosan inks for 3D printing of hydrogel microstructures. ACS Biomaterials Science & Engineering, 4(7), 2643–2652.CrossRef
109.
go back to reference Xu, Q., Ke, X., Shen, L., Ge, N., Zhang, Y., Fu, F., & Liu, X. (2018). Surface modification by carboxymethy chitosan via pad-dry-cure method for binding Ag NPs onto cotton fabric. International Journal of Biological Macromolecules, 111, 796–803.PubMedCrossRef Xu, Q., Ke, X., Shen, L., Ge, N., Zhang, Y., Fu, F., & Liu, X. (2018). Surface modification by carboxymethy chitosan via pad-dry-cure method for binding Ag NPs onto cotton fabric. International Journal of Biological Macromolecules, 111, 796–803.PubMedCrossRef
110.
go back to reference Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs, 13(3), 1133–1174. Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs, 13(3), 1133–1174.
111.
go back to reference Yu, Y., Shen, M., Song, Q., & Xie, J. (2018). Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate Polymers, 183, 91–101.PubMedCrossRef Yu, Y., Shen, M., Song, Q., & Xie, J. (2018). Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate Polymers, 183, 91–101.PubMedCrossRef
Metadata
Title
Introduction to Biopolymers and Their Potential in the Textile Industry
Authors
Shumaila Kiran
Shahzaib
Sarosh Iqbal
Bushra Munir
Iram Hafiz
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0684-6_1

Premium Partners