Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Introduction to Nanoseparation

Authors : Yun Kuang, Ming Jiang, Kai Sun

Published in: Nanoseparation Using Density Gradient Ultracentrifugation

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanomaterials have been attracted tremendous attentions for decades, due to their unique properties on nanoscale. As well known, the properties, such as chemical, thermal, mechanical, optical, electrical, and magnetic properties, are highly dependent on the size of nanomaterials, as so-called size-dependent quantum effect. Thus, to obtain monodisperse nanostructures is of great significance. With the help of various ligands, solution-phase synthesis could produce colloidal nanostructures with relatively homogeneous morphology and narrow size distribution for some nanosystems. However, owing to the synthetic difficulties, fine control of uniform nanostructures still remains a big challenge. Besides, nanoseparation, as a “post-synthesis” method, is a powerful tool to sort and achieve monodispersity and to avoid possible aggregation of the colloids. In this chapter, the basic principles of nanoseparation and a brief introduction of common techniques used for the separation of nanostructures, including membrane filtration, chromatograph, electrophoresis, magnetic field and centrifugation, will be discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ersahin ME, Ozgun H, Dereli RK et al (2012) A review on dynamic membrane filtration: materials, applications and future perspectives. Bioresource Technol 122(5):196–206CrossRef Ersahin ME, Ozgun H, Dereli RK et al (2012) A review on dynamic membrane filtration: materials, applications and future perspectives. Bioresource Technol 122(5):196–206CrossRef
2.
go back to reference Sweeney SF, Woehrle GH, Hutchison JE (2006) J Am Chem Soc 128:3190–3197 Sweeney SF, Woehrle GH, Hutchison JE (2006) J Am Chem Soc 128:3190–3197
3.
go back to reference Prabha S, Zhou WZ, Panyam J et al (2002) Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm 244:105–115CrossRef Prabha S, Zhou WZ, Panyam J et al (2002) Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm 244:105–115CrossRef
4.
go back to reference Akthakul A, Hochbaum AI, Stellacci F et al (2005) Mayes size fractionation of metal nanoparticles by membrane filtration. Adv Mater 17:532–535CrossRef Akthakul A, Hochbaum AI, Stellacci F et al (2005) Mayes size fractionation of metal nanoparticles by membrane filtration. Adv Mater 17:532–535CrossRef
5.
go back to reference Weiss J (2008) Ion chromatography. Wiley, Hoboken Weiss J (2008) Ion chromatography. Wiley, Hoboken
6.
go back to reference Krueger KM, Al-Somali AM, Falkner JC et al (2005) Colvin characterization of nanocrystalline CdSe by size exclusion chromatography. Anal Chem 77:3511–3515CrossRef Krueger KM, Al-Somali AM, Falkner JC et al (2005) Colvin characterization of nanocrystalline CdSe by size exclusion chromatography. Anal Chem 77:3511–3515CrossRef
7.
go back to reference Novak JP, Nickerson C, Franzen S et al (2001) Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography. Anal Chem 73:5758–5761CrossRef Novak JP, Nickerson C, Franzen S et al (2001) Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography. Anal Chem 73:5758–5761CrossRef
8.
go back to reference Fischer CH, Weller H, Katsikas L et al (2002) Photochemistry of colloidal semiconductors. 30. HPLC investigation of small CdS particles. Langmuir 5(2):429–432CrossRef Fischer CH, Weller H, Katsikas L et al (2002) Photochemistry of colloidal semiconductors. 30. HPLC investigation of small CdS particles. Langmuir 5(2):429–432CrossRef
9.
go back to reference Wei GT, Liu FK, Wang CRC (1999) Shape separation of nanometer gold particles by size-exclusion chromatography. Anal Chem 71(11):2085–2091CrossRef Wei GT, Liu FK, Wang CRC (1999) Shape separation of nanometer gold particles by size-exclusion chromatography. Anal Chem 71(11):2085–2091CrossRef
10.
go back to reference Jimenez VL, Leopold MC, Mazzitelli C et al (2003) HPLC of monolayer-protected gold nanoclusters. Anal Chem 75(2):199–206CrossRef Jimenez VL, Leopold MC, Mazzitelli C et al (2003) HPLC of monolayer-protected gold nanoclusters. Anal Chem 75(2):199–206CrossRef
11.
go back to reference Moore KE, Pfohl M, Hennrich F et al (2014) Separation of double-walled carbon nanotubes by size exclusion column chromatography. ACS Nano 8(7):6756–6764CrossRef Moore KE, Pfohl M, Hennrich F et al (2014) Separation of double-walled carbon nanotubes by size exclusion column chromatography. ACS Nano 8(7):6756–6764CrossRef
12.
go back to reference Anand Jagota SRL, Constantine Khripin, Ming Z (2005) Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids. J Phys Chem B 109(7):2559–2566CrossRef Anand Jagota SRL, Constantine Khripin, Ming Z (2005) Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids. J Phys Chem B 109(7):2559–2566CrossRef
13.
go back to reference Xu X, Caswell KK, Tucker E et al (2007) Size and shape separation of gold nanoparticles with preparative gel electrophoresis. J Chromatogr A 1167(1):35–41CrossRef Xu X, Caswell KK, Tucker E et al (2007) Size and shape separation of gold nanoparticles with preparative gel electrophoresis. J Chromatogr A 1167(1):35–41CrossRef
14.
go back to reference Arnaud I, Abid JP, Roussel C et al (2005) Size-selective separation of gold nanoparticles using isoelectric focusing electrophoresis. Chem Commun 6(6):787CrossRef Arnaud I, Abid JP, Roussel C et al (2005) Size-selective separation of gold nanoparticles using isoelectric focusing electrophoresis. Chem Commun 6(6):787CrossRef
15.
go back to reference Hwang WM, Lee CY, Boo DW et al (2003) Separation of nanoparticles in different sizes and compositions by capillary electrophoresis. B Kor Chem Soc 24(5):684–686CrossRef Hwang WM, Lee CY, Boo DW et al (2003) Separation of nanoparticles in different sizes and compositions by capillary electrophoresis. B Kor Chem Soc 24(5):684–686CrossRef
16.
go back to reference Schaaff TG, Knight G, Shafigullin MN et al (1998) Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound. J Phys Chem B 102(52)CrossRef Schaaff TG, Knight G, Shafigullin MN et al (1998) Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound. J Phys Chem B 102(52)CrossRef
17.
go back to reference Eychmüller A, Katsikas L, Weller H (1990) Photochemistry of semiconductor colloids. 35. Size separation of colloidal cadmium sulfide by gel electrophoresis. Langmuir 6(10):1605–1608CrossRef Eychmüller A, Katsikas L, Weller H (1990) Photochemistry of semiconductor colloids. 35. Size separation of colloidal cadmium sulfide by gel electrophoresis. Langmuir 6(10):1605–1608CrossRef
18.
go back to reference Hanauer M, Pierrat S, Zins I et al (2007) Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett 7(7):2881–2885CrossRef Hanauer M, Pierrat S, Zins I et al (2007) Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett 7(7):2881–2885CrossRef
19.
go back to reference Peterson RR, Cliffel DE (2005) Continuous free-flow electrophoresis of water-soluble monolayer-protected clusters. Anal Chem 77(14):4348–4353CrossRef Peterson RR, Cliffel DE (2005) Continuous free-flow electrophoresis of water-soluble monolayer-protected clusters. Anal Chem 77(14):4348–4353CrossRef
20.
go back to reference Gole AM, Sathivel C, Lachke A et al (1999) Size separation of colloidal nanoparticles using a miniscale isoelectric focusing technique. J Chromatogr A 848(1–2):485–490CrossRef Gole AM, Sathivel C, Lachke A et al (1999) Size separation of colloidal nanoparticles using a miniscale isoelectric focusing technique. J Chromatogr A 848(1–2):485–490CrossRef
21.
go back to reference Liu FK, Tsai MH, Hsu YC et al (2006) Analytical separation of Au/Ag core/shell nanoparticles by capillary electrophoresis. J Chromatogr A 1133(1):340–346CrossRef Liu FK, Tsai MH, Hsu YC et al (2006) Analytical separation of Au/Ag core/shell nanoparticles by capillary electrophoresis. J Chromatogr A 1133(1):340–346CrossRef
22.
go back to reference Lao AIK, Trau D, Hsing IM (2002) Miniaturized flow fractionation device assisted by a pulsed electric field for nanoparticle separation. Anal Chem 74(20):5364CrossRef Lao AIK, Trau D, Hsing IM (2002) Miniaturized flow fractionation device assisted by a pulsed electric field for nanoparticle separation. Anal Chem 74(20):5364CrossRef
23.
go back to reference Gigault J, Gale BK, Le Hecho I et al (2011) Nanoparticle characterization by cyclical electrical field-flow fractionation. Anal Chem 83(17):6565CrossRef Gigault J, Gale BK, Le Hecho I et al (2011) Nanoparticle characterization by cyclical electrical field-flow fractionation. Anal Chem 83(17):6565CrossRef
24.
go back to reference Latham AH, Freitas RS, Schiffer P et al (2005) Capillary magnetic field flow fractionation and analysis of magnetic nanoparticles. Anal Chem 77(15):5055–5062CrossRef Latham AH, Freitas RS, Schiffer P et al (2005) Capillary magnetic field flow fractionation and analysis of magnetic nanoparticles. Anal Chem 77(15):5055–5062CrossRef
25.
go back to reference Beveridge J S. (2012) Differential magnetic catch and release: separation, purification, and characterization of magnetic nanoparticles and particle assemblies. Dissertations and theses-Gradworks Beveridge J S. (2012) Differential magnetic catch and release: separation, purification, and characterization of magnetic nanoparticles and particle assemblies. Dissertations and theses-Gradworks
26.
go back to reference Beveridge JS, Buck MR, Bondi JF et al (2011) Purification and magnetic interrogation of hybrid Au–Fe3O4 and FePt–Fe3O4 nanoparticles. Angew Chem Int Edit 50(42):9875–9879CrossRef Beveridge JS, Buck MR, Bondi JF et al (2011) Purification and magnetic interrogation of hybrid Au–Fe3O4 and FePt–Fe3O4 nanoparticles. Angew Chem Int Edit 50(42):9875–9879CrossRef
27.
go back to reference Yavuz CT, Mayo JT, William WY et al (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314(5801):964CrossRef Yavuz CT, Mayo JT, William WY et al (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314(5801):964CrossRef
28.
go back to reference O’connell MJ, Bachilo SM, Huffman CB et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581):593CrossRef O’connell MJ, Bachilo SM, Huffman CB et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581):593CrossRef
29.
go back to reference Guo Z, Fan X, Xu L et al (2011) Shape separation of colloidal gold nanoparticles through salt-triggered selective precipitation. Chem Commun 47(14):4180CrossRef Guo Z, Fan X, Xu L et al (2011) Shape separation of colloidal gold nanoparticles through salt-triggered selective precipitation. Chem Commun 47(14):4180CrossRef
30.
go back to reference Sharma V, Park K, Srinivasarao M (2009) Shape separation of gold nanorods using centrifugation. PNAS 106(13):4981–4985CrossRef Sharma V, Park K, Srinivasarao M (2009) Shape separation of gold nanorods using centrifugation. PNAS 106(13):4981–4985CrossRef
31.
go back to reference Jamison JA, Krueger KM, Yavuz CT et al (2008) Size-dependent sedimentation properties of nanocrystals. ACS Nano 2(2):311–319CrossRef Jamison JA, Krueger KM, Yavuz CT et al (2008) Size-dependent sedimentation properties of nanocrystals. ACS Nano 2(2):311–319CrossRef
32.
go back to reference Svedberg T, Nichols JB (2002) Determination of size and distribution of size of particle by centrifugal methods. J Am Chem Soc 12:2910–2917 Svedberg T, Nichols JB (2002) Determination of size and distribution of size of particle by centrifugal methods. J Am Chem Soc 12:2910–2917
33.
go back to reference Li P, Huang J, Luo L et al (2016) Universal parameter optimization of density gradient ultracentrifugation using CdSe nanoparticles as tracing agents. Anal Chem 88(17):8495CrossRef Li P, Huang J, Luo L et al (2016) Universal parameter optimization of density gradient ultracentrifugation using CdSe nanoparticles as tracing agents. Anal Chem 88(17):8495CrossRef
Metadata
Title
Introduction to Nanoseparation
Authors
Yun Kuang
Ming Jiang
Kai Sun
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5190-6_1

Premium Partners