Skip to main content
Top
Published in:
Cover of the book

2015 | OriginalPaper | Chapter

Introduction to Ultra Low Power Transceiver Design

Authors : Dhongue Lee, Patrick P. Mercier

Published in: Ultra-Low-Power Short-Range Radios

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Design of radios with ultra-low-power consumption can enable many new and exciting applications ranging from wearable healthcare to Internet of Things devices and beyond. Achieving low power operation is usually an exercise in trading-off important performance metrics with power. This chapter presents an overview of state-of-the-art narrowband architectures and techniques that achieve ultra-low-power operation, and concludes with a section that benchmarks recent state-of-the-art designs in order to illustrate power-performance trade-offs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.M. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, T. Tuan, PicoRadios for wireless sensor networks: the next challenge in ultra-low power design, in IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2002, pp. 2001–2002 J.M. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, T. Tuan, PicoRadios for wireless sensor networks: the next challenge in ultra-low power design, in IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2002, pp. 2001–2002
2.
go back to reference D.-G. Lee, L.G. Salem, P.P. Mercier, Ultra-low-power transmitter design. Microwave Magazine, April 2015 D.-G. Lee, L.G. Salem, P.P. Mercier, Ultra-low-power transmitter design. Microwave Magazine, April 2015
3.
go back to reference S. Sayilir, W.-F. Loke, J. Lee, H. Diamond, B. Epstein, D.L. Rhodes, B. Jung, A −90 dBm sensitivity wireless transceiver using VCO-PA-LNA-switch-modulator co-design for low power insect-based wireless sensor networks. IEEE J. Solid-State Circuits 49(4), 996–1006 (2014)CrossRef S. Sayilir, W.-F. Loke, J. Lee, H. Diamond, B. Epstein, D.L. Rhodes, B. Jung, A −90 dBm sensitivity wireless transceiver using VCO-PA-LNA-switch-modulator co-design for low power insect-based wireless sensor networks. IEEE J. Solid-State Circuits 49(4), 996–1006 (2014)CrossRef
4.
go back to reference P.S. Hall, Y.I. Nechayev, A. Alomainy, C.C. Constantinou, C. Parini, M.R. Kamarudin, T.Z. Salim, D.T.M. Hee, R. Dubrovka, A.S. Owadally, A. Serra, P. Nepa, M. Gallo, M. Bozzetti, Antennas and propagation for on-body communication systems. IEEE Antenn. Propag. Mag. 49(3), 41–58 (2007)CrossRef P.S. Hall, Y.I. Nechayev, A. Alomainy, C.C. Constantinou, C. Parini, M.R. Kamarudin, T.Z. Salim, D.T.M. Hee, R. Dubrovka, A.S. Owadally, A. Serra, P. Nepa, M. Gallo, M. Bozzetti, Antennas and propagation for on-body communication systems. IEEE Antenn. Propag. Mag. 49(3), 41–58 (2007)CrossRef
5.
go back to reference D. Smith, D. Miniutti, L. Hanlen, A. Zhang, D. Lewis, D. Rodda, B. Gilbert, Power delay profiles for dynamic narrowband body area network channels. IEEE 802.15.6 standard, 2009 D. Smith, D. Miniutti, L. Hanlen, A. Zhang, D. Lewis, D. Rodda, B. Gilbert, Power delay profiles for dynamic narrowband body area network channels. IEEE 802.15.6 standard, 2009
6.
go back to reference A. Fort, F. Keshmiri, G.R. Crusats, C. Craeye, C. Oestges, A body area propagation model derived from fundamental principles: analytical analysis and comparison with measurements. IEEE Trans. Antenn. Propag. 58(2), 503–514 (2010)MathSciNetCrossRef A. Fort, F. Keshmiri, G.R. Crusats, C. Craeye, C. Oestges, A body area propagation model derived from fundamental principles: analytical analysis and comparison with measurements. IEEE Trans. Antenn. Propag. 58(2), 503–514 (2010)MathSciNetCrossRef
7.
go back to reference IEEE Standard for Local and metropolitan area networks – Part 15.6: Wireless Body Area Networks. IEEE Std 802.15.6, 2012 IEEE Standard for Local and metropolitan area networks – Part 15.6: Wireless Body Area Networks. IEEE Std 802.15.6, 2012
8.
go back to reference G. Devita, A.C.W. Wong, N. Kasparidis, P. Corbishley, A. Burdett, P. Paddan, A 0.9 mW PLL integrated in an ultra-low-power SoC for WPAN and WBAN applications, in 2010 Proceedings of ESSCIRC, 2010, pp. 158–161 G. Devita, A.C.W. Wong, N. Kasparidis, P. Corbishley, A. Burdett, P. Paddan, A 0.9 mW PLL integrated in an ultra-low-power SoC for WPAN and WBAN applications, in 2010 Proceedings of ESSCIRC, 2010, pp. 158–161
9.
go back to reference W. Deng, D. Yang, T. Ueno, T. Siriburanon, S. Kondo, K. Okada, A. Matsuzawa, 15.1 A 0.0066 mm2 780 μW fully synthesizable PLL with a current-output DAC and an interpolative phase-coupled oscillator using edge-injection technique, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 266–267 W. Deng, D. Yang, T. Ueno, T. Siriburanon, S. Kondo, K. Okada, A. Matsuzawa, 15.1 A 0.0066 mm2 780 μW fully synthesizable PLL with a current-output DAC and an interpolative phase-coupled oscillator using edge-injection technique, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 266–267
10.
go back to reference J. Gil, J.-H. Kim, C.S. Kim, C. Park, J. Park, H. Park, H. Lee, S.-J. Lee, Y.-H. Jang, M. Koo, J.-M. Gil, K. Han, Y.W. Kwon, I. Song, A fully integrated low-power high-coexistence 2.4-GHz ZigBee transceiver for biomedical and healthcare applications. IEEE Trans. Microw. Theory Tech. 62(9), 1879–1889 (2014)CrossRef J. Gil, J.-H. Kim, C.S. Kim, C. Park, J. Park, H. Park, H. Lee, S.-J. Lee, Y.-H. Jang, M. Koo, J.-M. Gil, K. Han, Y.W. Kwon, I. Song, A fully integrated low-power high-coexistence 2.4-GHz ZigBee transceiver for biomedical and healthcare applications. IEEE Trans. Microw. Theory Tech. 62(9), 1879–1889 (2014)CrossRef
11.
go back to reference A. Molnar, B. Lu, S. Lanzisera, B. W. Cook, K.S.J. Pister, An ultra-low power 900 MHz RF transceiver for wireless sensor networks, in Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571), 2004, pp. 401–404 A. Molnar, B. Lu, S. Lanzisera, B. W. Cook, K.S.J. Pister, An ultra-low power 900 MHz RF transceiver for wireless sensor networks, in Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571), 2004, pp. 401–404
12.
go back to reference V. Karam, P.H.R. Popplewell, A. Shamim, J. Rogers, C. Plett, A 6.3 GHz BFSK transmitter with on-chip antenna for self-powered medical sensor applications, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2007, pp. 101–104 V. Karam, P.H.R. Popplewell, A. Shamim, J. Rogers, C. Plett, A 6.3 GHz BFSK transmitter with on-chip antenna for self-powered medical sensor applications, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2007, pp. 101–104
13.
go back to reference M. Vidojkovic, X. Huang, P. Harpe, S. Rampu, C. Zhou, L. Huang, J. van de Molengraft, K. Imamura, B. Busze, F. Bouwens, M. Konijnenburg, J. Santana, A. Breeschoten, J. Huisken, K. Philips, G. Dolmans, H. de Groot, A 2.4 GHz ULP OOK single-chip transceiver for healthcare applications. IEEE Trans. Biomed. Circuits Syst. 5(6), 523–534 (2011)CrossRef M. Vidojkovic, X. Huang, P. Harpe, S. Rampu, C. Zhou, L. Huang, J. van de Molengraft, K. Imamura, B. Busze, F. Bouwens, M. Konijnenburg, J. Santana, A. Breeschoten, J. Huisken, K. Philips, G. Dolmans, H. de Groot, A 2.4 GHz ULP OOK single-chip transceiver for healthcare applications. IEEE Trans. Biomed. Circuits Syst. 5(6), 523–534 (2011)CrossRef
14.
go back to reference A. Yamagishi, M. Ugajin, T. Tsukahara, A 1-V 2.4-GHz PLL synthesizer with a fully differential prescaler and a low-off-leakage charge pump, in IEEE MTT-S International Microwave Symposium Digest, 2003, vol. 2, pp. 733–736 A. Yamagishi, M. Ugajin, T. Tsukahara, A 1-V 2.4-GHz PLL synthesizer with a fully differential prescaler and a low-off-leakage charge pump, in IEEE MTT-S International Microwave Symposium Digest, 2003, vol. 2, pp. 733–736
15.
go back to reference P.P. Mercier, S. Bandyopadhyay, A.C. Lysaght, K.M. Stankovic, A.P. Chandrakasan, A sub-nW 2.4 GHz transmitter for low data-rate sensing applications. IEEE J. Solid-State Circuits 49(7), 1463–1474 (2014)CrossRef P.P. Mercier, S. Bandyopadhyay, A.C. Lysaght, K.M. Stankovic, A.P. Chandrakasan, A sub-nW 2.4 GHz transmitter for low data-rate sensing applications. IEEE J. Solid-State Circuits 49(7), 1463–1474 (2014)CrossRef
16.
go back to reference G. Chen, H. Ghaed, R. Haque, M. Wieckowski, Y. Kim, G. Kim, D. Fick, D. Kim, M. Seok, K. Wise, D. Blaauw, D. Sylvester, A cubic-millimeter energy-autonomous wireless intraocular pressure monitor, in 2011 IEEE International Solid-State Circuits Conference, 2011, pp. 310–312 G. Chen, H. Ghaed, R. Haque, M. Wieckowski, Y. Kim, G. Kim, D. Fick, D. Kim, M. Seok, K. Wise, D. Blaauw, D. Sylvester, A cubic-millimeter energy-autonomous wireless intraocular pressure monitor, in 2011 IEEE International Solid-State Circuits Conference, 2011, pp. 310–312
17.
go back to reference B.W. Cook, A. Berny, A. Molnar, S. Lanzisera, K.S.J. Pister, Low-power 2.4-GHz transceiver with passive RX front-end and 400-mV supply. IEEE J. Solid-State Circuits 41(12), 2757–2766 (2006)CrossRef B.W. Cook, A. Berny, A. Molnar, S. Lanzisera, K.S.J. Pister, Low-power 2.4-GHz transceiver with passive RX front-end and 400-mV supply. IEEE J. Solid-State Circuits 41(12), 2757–2766 (2006)CrossRef
18.
go back to reference X. Huang, P. Harpe, X. Wang, G. Dolmans, H. de Groot, A 0 dBm 10 Mbps 2.4 GHz ultra-low power ASK/OOK transmitter with digital pulse-shaping, in IEEE Radio Frequency Integrated Circuits Symposium, 2010, pp. 263–266 X. Huang, P. Harpe, X. Wang, G. Dolmans, H. de Groot, A 0 dBm 10 Mbps 2.4 GHz ultra-low power ASK/OOK transmitter with digital pulse-shaping, in IEEE Radio Frequency Integrated Circuits Symposium, 2010, pp. 263–266
19.
go back to reference J.L. Bohorquez, A.P. Chandrakasan, J.L. Dawson, A 350 μW CMOS MSK transmitter and 400 μW OOK super-regenerative receiver for medical implant communications. IEEE J. Solid-State Circuits 44(4), 1248–1259 (2009)CrossRef J.L. Bohorquez, A.P. Chandrakasan, J.L. Dawson, A 350 μW CMOS MSK transmitter and 400 μW OOK super-regenerative receiver for medical implant communications. IEEE J. Solid-State Circuits 44(4), 1248–1259 (2009)CrossRef
20.
go back to reference E.Y. Chow, S. Chakraborty, W.J. Chappell, P.P. Irazoqui, Mixed-signal integrated circuits for self-contained sub-cubic millimeter biomedical implants, in IEEE International Solid-State Circuits Conference – (ISSCC), 2010, pp. 236–237 E.Y. Chow, S. Chakraborty, W.J. Chappell, P.P. Irazoqui, Mixed-signal integrated circuits for self-contained sub-cubic millimeter biomedical implants, in IEEE International Solid-State Circuits Conference – (ISSCC), 2010, pp. 236–237
21.
go back to reference P.P. Mercier, A.C. Lysaght, S. Bandyopadhyay, A.P. Chandrakasan, K.M. Stankovic, Energy extraction from the biologic battery in the inner ear. Nat. Biotechnol. 30(12), 1240–1243 (2012)CrossRef P.P. Mercier, A.C. Lysaght, S. Bandyopadhyay, A.P. Chandrakasan, K.M. Stankovic, Energy extraction from the biologic battery in the inner ear. Nat. Biotechnol. 30(12), 1240–1243 (2012)CrossRef
22.
go back to reference X. Huang, A. Ba, P. Harpe, G. Dolmans, H. de Groot, J.R. Long, A 915 MHz, ultra-low power 2-tone transceiver with enhanced interference resilience. IEEE J. Solid-State Circuits 47(12), 3197–3207 (2012)CrossRef X. Huang, A. Ba, P. Harpe, G. Dolmans, H. de Groot, J.R. Long, A 915 MHz, ultra-low power 2-tone transceiver with enhanced interference resilience. IEEE J. Solid-State Circuits 47(12), 3197–3207 (2012)CrossRef
23.
go back to reference J. Bae, L. Yan, H.-J. Yoo, A low energy injection-locked FSK transceiver with frequency-to-amplitude conversion for body sensor applications. IEEE J. Solid-State Circuits 46(4), 928–937 (2011)CrossRef J. Bae, L. Yan, H.-J. Yoo, A low energy injection-locked FSK transceiver with frequency-to-amplitude conversion for body sensor applications. IEEE J. Solid-State Circuits 46(4), 928–937 (2011)CrossRef
24.
go back to reference G. Papotto, F. Carrara, A. Finocchiaro, G. Palmisano, A 90-nm CMOS 5-Mbps crystal-less RF-powered transceiver for wireless sensor network nodes. IEEE J. Solid-State Circuits 49(2), 335–346 (2014)CrossRef G. Papotto, F. Carrara, A. Finocchiaro, G. Palmisano, A 90-nm CMOS 5-Mbps crystal-less RF-powered transceiver for wireless sensor network nodes. IEEE J. Solid-State Circuits 49(2), 335–346 (2014)CrossRef
25.
go back to reference J. Pandey, B.P. Otis, A sub-100 μW MICS/ISM band transmitter based on injection-locking and frequency multiplication. IEEE J. Solid-State Circuits 46(5), 1049–1058 (2011)CrossRef J. Pandey, B.P. Otis, A sub-100 μW MICS/ISM band transmitter based on injection-locking and frequency multiplication. IEEE J. Solid-State Circuits 46(5), 1049–1058 (2011)CrossRef
26.
go back to reference C. Ma, C. Hu, J. Cheng, L. Xia, P.Y. Chiang, A near-threshold, 0.16 nJ/b OOK-transmitter with 0.18 nJ/b noise-cancelling super-regenerative receiver for the medical implant communications service. IEEE Trans. Biomed. Circuits Syst. 7(6), 841–850 (2013)CrossRef C. Ma, C. Hu, J. Cheng, L. Xia, P.Y. Chiang, A near-threshold, 0.16 nJ/b OOK-transmitter with 0.18 nJ/b noise-cancelling super-regenerative receiver for the medical implant communications service. IEEE Trans. Biomed. Circuits Syst. 7(6), 841–850 (2013)CrossRef
27.
go back to reference M.M. Izad, C.-H. Heng, A 17 pJ/bit 915 MHz 8PSK/O-QPSK transmitter for high data rate biomedical applications, in Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, 2012, pp. 1–4 M.M. Izad, C.-H. Heng, A 17 pJ/bit 915 MHz 8PSK/O-QPSK transmitter for high data rate biomedical applications, in Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, 2012, pp. 1–4
28.
go back to reference F. Zhang, M.A. Stoneback, B.P. Otis, A 23 μA RF-powered transmitter for biomedical applications, in 2011 IEEE Radio Frequency Integrated Circuits Symposium, 2011, pp. 1–4 F. Zhang, M.A. Stoneback, B.P. Otis, A 23 μA RF-powered transmitter for biomedical applications, in 2011 IEEE Radio Frequency Integrated Circuits Symposium, 2011, pp. 1–4
29.
go back to reference Y. Chee, A. Niknejad, J. Rabaey, A 46% efficient 0.8 dBm transmitter for wireless sensor networks, in Symposium on VLSI Circuits, 2006. Digest of Technical Papers, 2006, pp. 43–44 Y. Chee, A. Niknejad, J. Rabaey, A 46% efficient 0.8 dBm transmitter for wireless sensor networks, in Symposium on VLSI Circuits, 2006. Digest of Technical Papers, 2006, pp. 43–44
30.
go back to reference D.C. Daly, A.P. Chandrakasan, An energy-efficient OOK transceiver for wireless sensor networks. IEEE J. Solid-State Circuits 42(5), 1003–1011 (2007)CrossRef D.C. Daly, A.P. Chandrakasan, An energy-efficient OOK transceiver for wireless sensor networks. IEEE J. Solid-State Circuits 42(5), 1003–1011 (2007)CrossRef
31.
go back to reference A. Paidimarri, P.M. Nadeau, P.P. Mercier, A.P. Chandrakasan, A 2.4 GHz multi-channel FBAR-based transmitter with an integrated pulse-shaping power amplifier. IEEE J. Solid-State Circuits 48(4), 1042–1054 (2013)CrossRef A. Paidimarri, P.M. Nadeau, P.P. Mercier, A.P. Chandrakasan, A 2.4 GHz multi-channel FBAR-based transmitter with an integrated pulse-shaping power amplifier. IEEE J. Solid-State Circuits 48(4), 1042–1054 (2013)CrossRef
32.
go back to reference B. Otis, Y.H. Chee, J. Rabaey, A 400 μW-RX, 1.6 mW-TX superregenerative transceiver for wireless sensor networks, in ISSCC. IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005, pp. 396–398 B. Otis, Y.H. Chee, J. Rabaey, A 400 μW-RX, 1.6 mW-TX superregenerative transceiver for wireless sensor networks, in ISSCC. IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005, pp. 396–398
33.
go back to reference I. Nam, K. Choi, J. Lee, H.-K. Cha, B.-I. Seo, K. Kwon, K. Lee, A 2.4-GHz low-power low-IF receiver and direct-conversion transmitter in 0.18-μm CMOS for IEEE 802.15.4 WPAN applications. IEEE Trans. Microw. Theory Tech. 55(4), 682–689 (2007)CrossRef I. Nam, K. Choi, J. Lee, H.-K. Cha, B.-I. Seo, K. Kwon, K. Lee, A 2.4-GHz low-power low-IF receiver and direct-conversion transmitter in 0.18-μm CMOS for IEEE 802.15.4 WPAN applications. IEEE Trans. Microw. Theory Tech. 55(4), 682–689 (2007)CrossRef
34.
go back to reference P.M. Nadeau, A. Paidimarri, P.P. Mercier, A.P. Chandrakasan, Multi-channel 180 pJ/b 2.4 GHz FBAR-based receiver, in IEEE Radio Frequency Integrated Circuits Symposium, 2012, pp. 381–384 P.M. Nadeau, A. Paidimarri, P.P. Mercier, A.P. Chandrakasan, Multi-channel 180 pJ/b 2.4 GHz FBAR-based receiver, in IEEE Radio Frequency Integrated Circuits Symposium, 2012, pp. 381–384
35.
go back to reference A. Heragu, D. Ruffieux, C. Enz, A 2.4-GHz MEMS-based PLL-free multi-channel receiver with channel filtering at RF, in Proceedings of the ESSCIRC (ESSCIRC), 2012, pp. 137–140 A. Heragu, D. Ruffieux, C. Enz, A 2.4-GHz MEMS-based PLL-free multi-channel receiver with channel filtering at RF, in Proceedings of the ESSCIRC (ESSCIRC), 2012, pp. 137–140
36.
go back to reference K. Wang, J. Koo, R. Ruby, B. Otis, 21.7 A 1.8 mW PLL-free channelized 2.4 GHz ZigBee receiver utilizing fixed-LO temperature-compensated FBAR resonator, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 372–373 K. Wang, J. Koo, R. Ruby, B. Otis, 21.7 A 1.8 mW PLL-free channelized 2.4 GHz ZigBee receiver utilizing fixed-LO temperature-compensated FBAR resonator, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 372–373
37.
go back to reference N. Stanic, A. Balankutty, P.R. Kinget, Y. Tsividis, A 2.4-GHz ISM-band sliding-IF receiver with a 0.5-V supply. IEEE J. Solid-State Circuits 43(5), 1138–1145 (2008)CrossRef N. Stanic, A. Balankutty, P.R. Kinget, Y. Tsividis, A 2.4-GHz ISM-band sliding-IF receiver with a 0.5-V supply. IEEE J. Solid-State Circuits 43(5), 1138–1145 (2008)CrossRef
38.
go back to reference Z. Lin, P.-I. Mak, R. Martins, 9.4 A 0.5 V 1.15 mW 0.2 mm2 sub-GHz ZigBee receiver supporting 433/860/915/960 MHz ISM bands with zero external components, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 164–165 Z. Lin, P.-I. Mak, R. Martins, 9.4 A 0.5 V 1.15 mW 0.2 mm2 sub-GHz ZigBee receiver supporting 433/860/915/960 MHz ISM bands with zero external components, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 164–165
39.
go back to reference N.M. Pletcher, S. Gambini, J. Rabaey, A 52 μW wake-up receiver with −72 dBm sensitivity using an uncertain-IF architecture. IEEE J. Solid-State Circuits 44(1), 269–280 (2009)CrossRef N.M. Pletcher, S. Gambini, J. Rabaey, A 52 μW wake-up receiver with −72 dBm sensitivity using an uncertain-IF architecture. IEEE J. Solid-State Circuits 44(1), 269–280 (2009)CrossRef
40.
go back to reference F.X. Moncunill-Geniz, P. Pala-Schonwalder, O. Mas-Casals, A generic approach to the theory of superregenerative reception. IEEE Trans. Circuits Syst. Regul. Pap. 52(1), 54–70 (2005)CrossRef F.X. Moncunill-Geniz, P. Pala-Schonwalder, O. Mas-Casals, A generic approach to the theory of superregenerative reception. IEEE Trans. Circuits Syst. Regul. Pap. 52(1), 54–70 (2005)CrossRef
41.
go back to reference J.-Y. Chen, M.P. Flynn, J.P. Hayes, A fully integrated auto-calibrated super-regenerative receiver in 0.13-μm CMOS. IEEE J. Solid-State Circuits 42(9), 1976–1985 (2007)CrossRef J.-Y. Chen, M.P. Flynn, J.P. Hayes, A fully integrated auto-calibrated super-regenerative receiver in 0.13-μm CMOS. IEEE J. Solid-State Circuits 42(9), 1976–1985 (2007)CrossRef
44.
go back to reference P.D. Bradley, An ultra low power, high performance Medical Implant Communication System (MICS) transceiver for implantable devices, in IEEE Biomedical Circuits and Systems Conference, 2006, pp. 158–161 P.D. Bradley, An ultra low power, high performance Medical Implant Communication System (MICS) transceiver for implantable devices, in IEEE Biomedical Circuits and Systems Conference, 2006, pp. 158–161
45.
go back to reference J. Tan, W.-S. Liew, C.-H. Heng, Y. Lian, A 2.4 GHz ULP reconfigurable asymmetric transceiver for single-chip wireless neural recording IC. IEEE Trans. Biomed. Circuits Syst. 8(4), 497–509 (2014)CrossRef J. Tan, W.-S. Liew, C.-H. Heng, Y. Lian, A 2.4 GHz ULP reconfigurable asymmetric transceiver for single-chip wireless neural recording IC. IEEE Trans. Biomed. Circuits Syst. 8(4), 497–509 (2014)CrossRef
46.
go back to reference J. Masuch, M. Delgado-Restituto, A 1.1-mW −81.4-dBm sensitivity CMOS transceiver for Bluetooth low energy. IEEE Trans. Microw. Theory Tech. 61(4), 1660–1673 (2013)CrossRef J. Masuch, M. Delgado-Restituto, A 1.1-mW −81.4-dBm sensitivity CMOS transceiver for Bluetooth low energy. IEEE Trans. Microw. Theory Tech. 61(4), 1660–1673 (2013)CrossRef
47.
go back to reference J. Cheng, L. Xia, C. Ma, Y. Lian, X. Xu, C.P. Yue, Z. Hong, P.Y. Chiang, A near-threshold, multi-node, wireless body area sensor network powered by RF energy harvesting, in Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, 2012, pp. 1–4 J. Cheng, L. Xia, C. Ma, Y. Lian, X. Xu, C.P. Yue, Z. Hong, P.Y. Chiang, A near-threshold, multi-node, wireless body area sensor network powered by RF energy harvesting, in Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, 2012, pp. 1–4
48.
go back to reference F. Zhang, K. Wang, Y. Miyahara, B. Otis, A 1.6 mW 300 mV-supply 2.4 GHz receiver with −94 dBm sensitivity for energy-harvesting applications, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2013, pp. 456–457 F. Zhang, K. Wang, Y. Miyahara, B. Otis, A 1.6 mW 300 mV-supply 2.4 GHz receiver with −94 dBm sensitivity for energy-harvesting applications, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2013, pp. 456–457
49.
go back to reference T. Copani, S. Shashidharan, S. Chakraborty, M. Stevens, S. Kiaei, B. Bakkaloglu, A CMOS low-power transceiver with reconfigurable antenna interface for medical implant applications. IEEE Trans. Microw. Theory Tech. 59(5), 1369–1378 (2011)CrossRef T. Copani, S. Shashidharan, S. Chakraborty, M. Stevens, S. Kiaei, B. Bakkaloglu, A CMOS low-power transceiver with reconfigurable antenna interface for medical implant applications. IEEE Trans. Microw. Theory Tech. 59(5), 1369–1378 (2011)CrossRef
50.
go back to reference Y.-H. Liu, A. Ba, J.H. van den Heuvel, K. Philips, G. Dolmans, H. de Groot, 9.5 A 1.2 nJ/b 2.4 GHz receiver with a sliding-IF phase-to-digital converter for wireless personal/body-area networks, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 166–167 Y.-H. Liu, A. Ba, J.H. van den Heuvel, K. Philips, G. Dolmans, H. de Groot, 9.5 A 1.2 nJ/b 2.4 GHz receiver with a sliding-IF phase-to-digital converter for wireless personal/body-area networks, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 166–167
51.
go back to reference P. Choi, H.C. Park, S. Kim, S. Park, I. Nam, T.W. Kim, S. Park, S. Shin, M.S. Kim, K. Kang, Y. Ku, H. Choi, S.M. Park, K. Lee, An experimental coin-sized radio for extremely low-power WPAN (IEEE 802.15.4) application at 2.4 GHz. IEEE J. Solid-State Circuits 38(12), 2258–2268 (2003)CrossRef P. Choi, H.C. Park, S. Kim, S. Park, I. Nam, T.W. Kim, S. Park, S. Shin, M.S. Kim, K. Kang, Y. Ku, H. Choi, S.M. Park, K. Lee, An experimental coin-sized radio for extremely low-power WPAN (IEEE 802.15.4) application at 2.4 GHz. IEEE J. Solid-State Circuits 38(12), 2258–2268 (2003)CrossRef
52.
go back to reference M. Flatscher, M. Dielacher, T. Herndl, T. Lentsch, R. Matischek, J. Prainsack, W. Pribyl, H. Theuss, W. Weber, A bulk acoustic wave (BAW) based transceiver for an in-tire-pressure monitoring sensor node. IEEE J. Solid-State Circuits 45(1), 167–177 (2010)CrossRef M. Flatscher, M. Dielacher, T. Herndl, T. Lentsch, R. Matischek, J. Prainsack, W. Pribyl, H. Theuss, W. Weber, A bulk acoustic wave (BAW) based transceiver for an in-tire-pressure monitoring sensor node. IEEE J. Solid-State Circuits 45(1), 167–177 (2010)CrossRef
53.
go back to reference M. Vidojkovic, X. Huang, X. Wang, C. Zhou, A. Ba, M. Lont, Y.-H. Liu, P. Harpe, M. Ding, B. Busze, N. Kiyani, K. Kanda, S. Masui, K. Philips, H. de Groot, 9.7 A 0.33 nJ/b IEEE802.15.6/proprietary-MICS/ISM-band transceiver with scalable data-rate from 11 kb/s to 4.5 Mb/s for medical applications, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 170–171 M. Vidojkovic, X. Huang, X. Wang, C. Zhou, A. Ba, M. Lont, Y.-H. Liu, P. Harpe, M. Ding, B. Busze, N. Kiyani, K. Kanda, S. Masui, K. Philips, H. de Groot, 9.7 A 0.33 nJ/b IEEE802.15.6/proprietary-MICS/ISM-band transceiver with scalable data-rate from 11 kb/s to 4.5 Mb/s for medical applications, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 170–171
54.
go back to reference W.-Z. Chen, T.-Y. Lu, W.-W. Ou, S.-T. Chou, S.-Y. Yang, A 2.4 GHz reference-less receiver for 1 Mbps QPSK demodulation. IEEE Trans. Circuits Syst. Regul. Pap. 59(3), 505–514 (2012)MathSciNetCrossRef W.-Z. Chen, T.-Y. Lu, W.-W. Ou, S.-T. Chou, S.-Y. Yang, A 2.4 GHz reference-less receiver for 1 Mbps QPSK demodulation. IEEE Trans. Circuits Syst. Regul. Pap. 59(3), 505–514 (2012)MathSciNetCrossRef
55.
go back to reference J.H. Jang, D.F. Berdy, J. Lee, D. Peroulis, B. Jung, A wireless sensor node for condition monitoring powered by a vibration energy harvester, in IEEE Custom Integrated Circuits Conference (CICC), 2011, pp. 1–4 J.H. Jang, D.F. Berdy, J. Lee, D. Peroulis, B. Jung, A wireless sensor node for condition monitoring powered by a vibration energy harvester, in IEEE Custom Integrated Circuits Conference (CICC), 2011, pp. 1–4
56.
go back to reference F.X. Moncunill-Geniz, P. Pala-Schonwalder, C. Dehollain, N. Joehl, M. Declercq, An 11-Mb/s 2.1-mW synchronous superregenerative receiver at 2.4 GHz. IEEE Trans. Microw. Theory Tech. 55(6), 1355–1362 (2007)CrossRef F.X. Moncunill-Geniz, P. Pala-Schonwalder, C. Dehollain, N. Joehl, M. Declercq, An 11-Mb/s 2.1-mW synchronous superregenerative receiver at 2.4 GHz. IEEE Trans. Microw. Theory Tech. 55(6), 1355–1362 (2007)CrossRef
57.
go back to reference H.-G. Park, J. Lee, J.-A. Jang, J.-H. Jang, D.-S. Lee, H. Kim, S.J. Kim, S.-G. Lee, K.-Y. Lee, An ultra-low-power super regeneration oscillator-based transceiver with 177 μW leakage-compensated PLL and automatic quench waveform generator. IEEE Trans. Microw. Theory Tech. 61(9), 3381–3390 (2013)CrossRef H.-G. Park, J. Lee, J.-A. Jang, J.-H. Jang, D.-S. Lee, H. Kim, S.J. Kim, S.-G. Lee, K.-Y. Lee, An ultra-low-power super regeneration oscillator-based transceiver with 177 μW leakage-compensated PLL and automatic quench waveform generator. IEEE Trans. Microw. Theory Tech. 61(9), 3381–3390 (2013)CrossRef
58.
go back to reference D.C. Daly, P.P. Mercier, M. Bhardwaj, A.L. Stone, Z.N. Aldworth, T.L. Daniel, J. Voldman, J.G. Hildebrand, A.P. Chandrakasan, A pulsed UWB receiver SoC for insect motion control. IEEE J. Solid-State Circuits 45(1), 153–166 (2010)CrossRef D.C. Daly, P.P. Mercier, M. Bhardwaj, A.L. Stone, Z.N. Aldworth, T.L. Daniel, J. Voldman, J.G. Hildebrand, A.P. Chandrakasan, A pulsed UWB receiver SoC for insect motion control. IEEE J. Solid-State Circuits 45(1), 153–166 (2010)CrossRef
Metadata
Title
Introduction to Ultra Low Power Transceiver Design
Authors
Dhongue Lee
Patrick P. Mercier
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-14714-7_1