Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

1. Introduction

Authors : Ye Yao, Yuebin Yu

Published in: Modeling and Control in Air-conditioning Systems

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the development of economy and growth of people’s living standards, air-conditioning systems are increasingly popular for the improvement of thermal environment indoors, which results in ever-increasing energy consumption of buildings.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference US Energy Information Administration (EIA).: Electric Power Monthly, Table 5.1, 11 March 2011 US Energy Information Administration (EIA).: Electric Power Monthly, Table 5.1, 11 March 2011
2.
go back to reference US Department of Energy (DOE).: 2010 Buildings Energy Data Book, Sections 2.1.5 and 3.1.4 (2011) US Department of Energy (DOE).: 2010 Buildings Energy Data Book, Sections 2.1.5 and 3.1.4 (2011)
3.
go back to reference Building energy conservation research center of Tsinghua University, Annual Report on China Building Energy Efficiency (2013) Building energy conservation research center of Tsinghua University, Annual Report on China Building Energy Efficiency (2013)
4.
go back to reference Tsinghua university architecture technology science. DeST User Manual (2004) Tsinghua university architecture technology science. DeST User Manual (2004)
5.
go back to reference Park, C.: HVACSIM+ User’s Guide Update. National Institute of Standards and Technology (2008) Park, C.: HVACSIM+ User’s Guide Update. National Institute of Standards and Technology (2008)
6.
go back to reference Dols, W.S., Walton, G.N.: CONTAMW 2.0 User Manual. National Institute of Standards and Technology (2002) Dols, W.S., Walton, G.N.: CONTAMW 2.0 User Manual. National Institute of Standards and Technology (2002)
7.
go back to reference ASHRAE.: ASHRAE Handbook—Fundamentals. Atlanta (USA), GA (2009) ASHRAE.: ASHRAE Handbook—Fundamentals. Atlanta (USA), GA (2009)
8.
go back to reference Sami, S.M., Duong, T., Mercadier, Y., Galanis, N.: Prediction of the transient response of heat pumps. ASHRAE Trans. 93, 471–478 (1987) Sami, S.M., Duong, T., Mercadier, Y., Galanis, N.: Prediction of the transient response of heat pumps. ASHRAE Trans. 93, 471–478 (1987)
9.
go back to reference Sami, S.M., Comeau, M.A.: Development of a simulation model for predicting dynamic behavior of heat pumps with non-azeotropic refrigerant mixtures. Int. J. Energy Res. 16(4), 443–450 (1992) Sami, S.M., Comeau, M.A.: Development of a simulation model for predicting dynamic behavior of heat pumps with non-azeotropic refrigerant mixtures. Int. J. Energy Res. 16(4), 443–450 (1992)
10.
go back to reference Sami, S.M., Dahmani, A.: Numerical prediction of dynamic performance of vapor compression heat pump using new HFC alternatives to HCFC-22. J. Appl. Thermal Eng. 16(8/9), 691–705 (1996)CrossRef Sami, S.M., Dahmani, A.: Numerical prediction of dynamic performance of vapor compression heat pump using new HFC alternatives to HCFC-22. J. Appl. Thermal Eng. 16(8/9), 691–705 (1996)CrossRef
11.
go back to reference Lei, Z., Zaheeruddin, M.: Dynamic simulation and analysis of a water chiller refrigeration system. Appl. Therm. Eng. 25(14–15), 2258–2271 (2005)CrossRef Lei, Z., Zaheeruddin, M.: Dynamic simulation and analysis of a water chiller refrigeration system. Appl. Therm. Eng. 25(14–15), 2258–2271 (2005)CrossRef
12.
go back to reference Schalbart, P., Haberschill, P.: Simulation of the behaviour of a centrifugal chiller during quick start-up. Int. J. Refrig. 36(1), 222–236 (2013)CrossRef Schalbart, P., Haberschill, P.: Simulation of the behaviour of a centrifugal chiller during quick start-up. Int. J. Refrig. 36(1), 222–236 (2013)CrossRef
13.
go back to reference Grald, E.W., MacArthur, J.W.A.: Moving-boundary formulation for modeling time-dependent two-phase flows. Int. J. Heat Fluid Flow 13(3), 266–272 (1992)CrossRef Grald, E.W., MacArthur, J.W.A.: Moving-boundary formulation for modeling time-dependent two-phase flows. Int. J. Heat Fluid Flow 13(3), 266–272 (1992)CrossRef
14.
go back to reference Willatzen, M., Pettit, N.B.O.L., Ploug-Sørensen, L.: A general dynamic simulation model for evaporators and condensers in refrigeration. Part I: moving-boundary formulation of two-phase flows with heat exchange. Int. J. Refrig. 21(5), 398–403 (1998)CrossRef Willatzen, M., Pettit, N.B.O.L., Ploug-Sørensen, L.: A general dynamic simulation model for evaporators and condensers in refrigeration. Part I: moving-boundary formulation of two-phase flows with heat exchange. Int. J. Refrig. 21(5), 398–403 (1998)CrossRef
15.
go back to reference Nyers, J., Stoyan, G.: A dynamical model adequate for controlling the evaporator of a heat pump. Int. J. Refrig. 17(2), 101–108 (1994)CrossRef Nyers, J., Stoyan, G.: A dynamical model adequate for controlling the evaporator of a heat pump. Int. J. Refrig. 17(2), 101–108 (1994)CrossRef
16.
go back to reference He, X., Liu, S., Asada, H.H.: Modeling of vapor compression cycles for multivariable feedback control of HVAC systems. ASME J. Dyn. Syst. Measur. Control 119(2), 183–191 (1997)MATHCrossRef He, X., Liu, S., Asada, H.H.: Modeling of vapor compression cycles for multivariable feedback control of HVAC systems. ASME J. Dyn. Syst. Measur. Control 119(2), 183–191 (1997)MATHCrossRef
17.
go back to reference McKinley, T.L., Alleyne, A.G.: An advanced nonlinear switched heat exchanger model for vapor compression cycles using the moving-boundary method. Int. J. Refrig. 31(7), 1253–1264 (2008)CrossRef McKinley, T.L., Alleyne, A.G.: An advanced nonlinear switched heat exchanger model for vapor compression cycles using the moving-boundary method. Int. J. Refrig. 31(7), 1253–1264 (2008)CrossRef
18.
go back to reference Cecchinato, L., Mancini, F.: An intrinsically mass conservative switched evaporator model adopting the moving-boundary method. Int. J. Refrig. 35(2), 349–364 (2012)CrossRef Cecchinato, L., Mancini, F.: An intrinsically mass conservative switched evaporator model adopting the moving-boundary method. Int. J. Refrig. 35(2), 349–364 (2012)CrossRef
19.
go back to reference Bell, I.H., Quoilin, S., Georges, E., Braun, J.E., Groll, E.A., Horton, W.T., Lemort, V.: A generalized moving-boundary algorithm to predict the heat transfer rate of counterflow heat exchangers for any phase configuration. Appl. Therm. Eng. 79(3), 192–201 (2015)CrossRef Bell, I.H., Quoilin, S., Georges, E., Braun, J.E., Groll, E.A., Horton, W.T., Lemort, V.: A generalized moving-boundary algorithm to predict the heat transfer rate of counterflow heat exchangers for any phase configuration. Appl. Therm. Eng. 79(3), 192–201 (2015)CrossRef
20.
go back to reference Bendapudi, S., Braun, J.E., Groll, E.A.: A comparison of moving-boundary and finite-volume formulations for transients in centrifugal chillers. Int. J. Refrig. 31(8), 1437–1452 (2008)CrossRef Bendapudi, S., Braun, J.E., Groll, E.A.: A comparison of moving-boundary and finite-volume formulations for transients in centrifugal chillers. Int. J. Refrig. 31(8), 1437–1452 (2008)CrossRef
21.
go back to reference Jin, G.Y., Cai, W.J., Lu, L., Lee, E.L., Chiang, A.: A simplified modeling of mechanical cooling tower for control and optimization of HVAC systems. Energy Convers. Manag. 48(2), 355–365 (2007)CrossRef Jin, G.Y., Cai, W.J., Lu, L., Lee, E.L., Chiang, A.: A simplified modeling of mechanical cooling tower for control and optimization of HVAC systems. Energy Convers. Manag. 48(2), 355–365 (2007)CrossRef
22.
go back to reference Kloppers, C., Kroger, G.: Cooling tower performance evaluation: Merkel, Poppe, and e-NTU methods of analysis. J. Eng. Gas Turbines Power 127(1), 1–7 (2005)CrossRef Kloppers, C., Kroger, G.: Cooling tower performance evaluation: Merkel, Poppe, and e-NTU methods of analysis. J. Eng. Gas Turbines Power 127(1), 1–7 (2005)CrossRef
23.
go back to reference Tan, K., Deng, S.: A numerical analysis of heat and mass transfer inside a reversibly used water cooling tower. Build. Environ. 38(1), 91–97 (2003)CrossRef Tan, K., Deng, S.: A numerical analysis of heat and mass transfer inside a reversibly used water cooling tower. Build. Environ. 38(1), 91–97 (2003)CrossRef
24.
go back to reference Fisenko, S.P., Petruchik, A.I., Solodukhin, A.D.: Evaporative cooling of water in a natural draft cooling tower. Int. J. Heat Mass Transf. 45(23), 4683–4694 (2002)MATHCrossRef Fisenko, S.P., Petruchik, A.I., Solodukhin, A.D.: Evaporative cooling of water in a natural draft cooling tower. Int. J. Heat Mass Transf. 45(23), 4683–4694 (2002)MATHCrossRef
25.
go back to reference Fisenko, S.P., Brin, A.A., Petruchik, A.I.: Evaporative cooling of water in a mechanical draft cooling tower. Int. J. Heat Mass Transf. 47(1), 165–177 (2004)MATHCrossRef Fisenko, S.P., Brin, A.A., Petruchik, A.I.: Evaporative cooling of water in a mechanical draft cooling tower. Int. J. Heat Mass Transf. 47(1), 165–177 (2004)MATHCrossRef
26.
go back to reference Mirth, D.R., Ramadhyani, S., Hittle, D.C.: Thermal performance of chilled-water cooling coils operating at low water velocities. ASHRAE Trans. 99(1), 43–53 (1993) Mirth, D.R., Ramadhyani, S., Hittle, D.C.: Thermal performance of chilled-water cooling coils operating at low water velocities. ASHRAE Trans. 99(1), 43–53 (1993)
27.
go back to reference Yu, X., Wen, J., Smith, T.F.: A model for the dynamic response of a cooling coil. Energy Build. 37(12), 1278–1289 (2005)CrossRef Yu, X., Wen, J., Smith, T.F.: A model for the dynamic response of a cooling coil. Energy Build. 37(12), 1278–1289 (2005)CrossRef
28.
go back to reference Threlkeld, J.L.: Thermal Environmental Engineering, 2nd edn. Prentice-Hall, Engledood Cliffs (1970) Threlkeld, J.L.: Thermal Environmental Engineering, 2nd edn. Prentice-Hall, Engledood Cliffs (1970)
29.
go back to reference Mullen, C.E., Bridges, B.D., Porter, K.J., Hahn, G.W., Bullard, C.W.: Development and validation of a room air-conditioning simulation model. ASHRAE Trans. 104(1), 389–397 (1998) Mullen, C.E., Bridges, B.D., Porter, K.J., Hahn, G.W., Bullard, C.W.: Development and validation of a room air-conditioning simulation model. ASHRAE Trans. 104(1), 389–397 (1998)
30.
go back to reference Deng, S.M.: A dynamic mathematical model of a direct expansion (DX) water cooled air-conditioning plant. Build. Environ. 35(7), 603–613 (2000)CrossRef Deng, S.M.: A dynamic mathematical model of a direct expansion (DX) water cooled air-conditioning plant. Build. Environ. 35(7), 603–613 (2000)CrossRef
31.
go back to reference Wang, J., Hihara, E.: Prediction of air coil performance under partially wet and totally wet cooling conditions using equivalent dry-bulb temperature method. Int. J. Refrig. 26(3), 293–301 (2003)CrossRef Wang, J., Hihara, E.: Prediction of air coil performance under partially wet and totally wet cooling conditions using equivalent dry-bulb temperature method. Int. J. Refrig. 26(3), 293–301 (2003)CrossRef
32.
go back to reference Bielski, S., Malinowski, L.: An analytical method for determining transient temperature field in a parallel-flow three-fluid heat exchanger. Int. Commun. Heat Mass Transfer 32(8), 1034–1044 (2005)CrossRef Bielski, S., Malinowski, L.: An analytical method for determining transient temperature field in a parallel-flow three-fluid heat exchanger. Int. Commun. Heat Mass Transfer 32(8), 1034–1044 (2005)CrossRef
33.
go back to reference Yin, J.: M. Jensen K. Analytic model for transient heat exchanger response. Int. J. Heat Mass Transf. 46(17), 3255–3264 (2003)MATHCrossRef Yin, J.: M. Jensen K. Analytic model for transient heat exchanger response. Int. J. Heat Mass Transf. 46(17), 3255–3264 (2003)MATHCrossRef
34.
go back to reference Ren, C., Yang, H.: An analytical model for the heat and mass transfer processes in indirect evaporative cooling with parallel/counter flow configurations. Int. J. Heat Mass Transf. 49(3–4), 617–627 (2006)MATH Ren, C., Yang, H.: An analytical model for the heat and mass transfer processes in indirect evaporative cooling with parallel/counter flow configurations. Int. J. Heat Mass Transf. 49(3–4), 617–627 (2006)MATH
35.
go back to reference Xia, L., Chan, M.Y., Deng, S.M., Xu, X.G.: Analytical solutions for evaluating the thermal performances of wet air cooling coils under both unit and non-unit Lewis factors. Energy Convers. Manag. 51(10), 2079–2086 (2010)CrossRef Xia, L., Chan, M.Y., Deng, S.M., Xu, X.G.: Analytical solutions for evaluating the thermal performances of wet air cooling coils under both unit and non-unit Lewis factors. Energy Convers. Manag. 51(10), 2079–2086 (2010)CrossRef
36.
go back to reference Yao, Y., Lian, Z., Hou, Z.: Thermal analysis of cooling coils based on a dynamic model. Appl. Therm. Eng. 24(7), 1037–1050 (2004)CrossRef Yao, Y., Lian, Z., Hou, Z.: Thermal analysis of cooling coils based on a dynamic model. Appl. Therm. Eng. 24(7), 1037–1050 (2004)CrossRef
37.
go back to reference Yao, Y., Huang, M., Mo, J., Dai, S.: State-space model for transient behavior of water-to-air surface heat exchanger. Int. J. Heat Mass Transfer 66(9), 173–192 (2013)CrossRef Yao, Y., Huang, M., Mo, J., Dai, S.: State-space model for transient behavior of water-to-air surface heat exchanger. Int. J. Heat Mass Transfer 66(9), 173–192 (2013)CrossRef
38.
go back to reference Eppelheimer, D.M.: Variable flow—the quest for system energy efficiency. ASHRAE Trans. 102(2), 673–678 (1996) Eppelheimer, D.M.: Variable flow—the quest for system energy efficiency. ASHRAE Trans. 102(2), 673–678 (1996)
39.
go back to reference Carrdo, V., Mazza, A.: Axial fan. IEA annex 17 Report, Politecnico Ditorino, Italy (1991) Carrdo, V., Mazza, A.: Axial fan. IEA annex 17 Report, Politecnico Ditorino, Italy (1991)
40.
go back to reference Wang, S.W.: Dynamic simulation of a building central chilling system and evaluation of EMCS on-line control strategies. Build. Environ. 33(1), 1–20 (1998)CrossRef Wang, S.W.: Dynamic simulation of a building central chilling system and evaluation of EMCS on-line control strategies. Build. Environ. 33(1), 1–20 (1998)CrossRef
41.
go back to reference Shao, L., Riffat, S.B.: Accuracy of CFD for predicting pressure losses in HVAC duct fittings. Appl. Energy 51(3), 233–248 (1995)CrossRef Shao, L., Riffat, S.B.: Accuracy of CFD for predicting pressure losses in HVAC duct fittings. Appl. Energy 51(3), 233–248 (1995)CrossRef
42.
go back to reference Fisk, W.J., Delp, W., Diamond, R.: Duct systems in large commercial buildings: physical characterization, air leakage, and heat conduction gains. Energy Build. 32(1), 109–119 (2000)CrossRef Fisk, W.J., Delp, W., Diamond, R.: Duct systems in large commercial buildings: physical characterization, air leakage, and heat conduction gains. Energy Build. 32(1), 109–119 (2000)CrossRef
43.
go back to reference Rokni, M., Gatski, T.B.: Predicting turbulent convective heat transfer in fully developed duct flows. Int. J. Heat Fluid Flow 22(4), 381–392 (2001)CrossRef Rokni, M., Gatski, T.B.: Predicting turbulent convective heat transfer in fully developed duct flows. Int. J. Heat Fluid Flow 22(4), 381–392 (2001)CrossRef
44.
go back to reference Sugiyama, H., Akiyama, M., Nemoto, Y., Gessner, F.B.: Calculation of turbulent heat flux distributions in a square duct with one roughened wall by means of algebraic heat flux models. Int. J. Heat Fluid Flow 23(1), 13–21 (2002)CrossRef Sugiyama, H., Akiyama, M., Nemoto, Y., Gessner, F.B.: Calculation of turbulent heat flux distributions in a square duct with one roughened wall by means of algebraic heat flux models. Int. J. Heat Fluid Flow 23(1), 13–21 (2002)CrossRef
45.
go back to reference Wu, S., Sun, J.Q.: A physics-based linear parametric model of room temperature in office buildings. Build. Environ. 50(1), 1–9 (2012)CrossRef Wu, S., Sun, J.Q.: A physics-based linear parametric model of room temperature in office buildings. Build. Environ. 50(1), 1–9 (2012)CrossRef
46.
go back to reference Abdul, A., Farrokh, J.S.: Review of modeling methods for HVAC systems. Appl. Therm. Eng. 67(1–2), 507–519 (2014) Abdul, A., Farrokh, J.S.: Review of modeling methods for HVAC systems. Appl. Therm. Eng. 67(1–2), 507–519 (2014)
47.
go back to reference Metha, D.P., Woods, J.E.: An experimental validation of a rational model of dynamic responses of building. ASHRAE Trans. 86(1), 546–558 (1980) Metha, D.P., Woods, J.E.: An experimental validation of a rational model of dynamic responses of building. ASHRAE Trans. 86(1), 546–558 (1980)
48.
go back to reference Borresen, B.A.: Thermal room models for control analysis. ASHRAE Trans. 87(2), 251–260 (1981) Borresen, B.A.: Thermal room models for control analysis. ASHRAE Trans. 87(2), 251–260 (1981)
49.
go back to reference Tashtoush, B., Molhim, M., Al-Rousan, M.: Dynamic model of an HVAC system for control analysis. Energy 30(10), 1729–1745 (2005)CrossRef Tashtoush, B., Molhim, M., Al-Rousan, M.: Dynamic model of an HVAC system for control analysis. Energy 30(10), 1729–1745 (2005)CrossRef
50.
go back to reference Riederer, P., Marchio, D., Visier, J.C., Husaunndee, A., Lahrech, R.: Room thermal modeling adapted to the test of HVAC control systems. Build. Environ. 37(8–9), 777–790 (2002)CrossRef Riederer, P., Marchio, D., Visier, J.C., Husaunndee, A., Lahrech, R.: Room thermal modeling adapted to the test of HVAC control systems. Build. Environ. 37(8–9), 777–790 (2002)CrossRef
51.
go back to reference Chen, Q., Peng, X., Paassen, A.H.C.V.: Prediction of room thermal response by CFD technique with conjugate heat transfer and radiation models. ASHRAE Trans. 101(part 1), 50–60 (1995) Chen, Q., Peng, X., Paassen, A.H.C.V.: Prediction of room thermal response by CFD technique with conjugate heat transfer and radiation models. ASHRAE Trans. 101(part 1), 50–60 (1995)
52.
go back to reference Wu, X., Olesen, B., Fang, W., Zhao, L.: A nodal model to predict vertical temperature distribution in a room with floor heating and displacement ventilation. Build. Environ. 59(1), 626–634 (2013)CrossRef Wu, X., Olesen, B., Fang, W., Zhao, L.: A nodal model to predict vertical temperature distribution in a room with floor heating and displacement ventilation. Build. Environ. 59(1), 626–634 (2013)CrossRef
53.
go back to reference Yao, Y., Yang, K., Huang, M.: A state-space model for dynamic response of indoor air temperature and relative humidity. Build. Environ. 64(6), 26–37 (2013)CrossRef Yao, Y., Yang, K., Huang, M.: A state-space model for dynamic response of indoor air temperature and relative humidity. Build. Environ. 64(6), 26–37 (2013)CrossRef
54.
go back to reference Huang, G., Wang, S., Xu, X.: Robust model predictive control of VAV air-handling units concerning uncertainties and constraints. HVAC R. Res. 16(1), 15–33 (2010)MathSciNetCrossRef Huang, G., Wang, S., Xu, X.: Robust model predictive control of VAV air-handling units concerning uncertainties and constraints. HVAC R. Res. 16(1), 15–33 (2010)MathSciNetCrossRef
55.
go back to reference Huang, G.: Model predictive control of VAV zone thermal systems concerning bi-linearity and gain nonlinearity. Control Eng. Pract. 19(7), 700–710 (2011)CrossRef Huang, G.: Model predictive control of VAV zone thermal systems concerning bi-linearity and gain nonlinearity. Control Eng. Pract. 19(7), 700–710 (2011)CrossRef
56.
go back to reference Wang, S., Zhou, Q., Xiao, F.: A system-level fault detection and diagnosis strategy for HVAC systems involving sensor faults. Energy Build. 42(4), 477–490 (2010)CrossRef Wang, S., Zhou, Q., Xiao, F.: A system-level fault detection and diagnosis strategy for HVAC systems involving sensor faults. Energy Build. 42(4), 477–490 (2010)CrossRef
57.
go back to reference Hosoz, M., Ertunc, H.M.: Artificial neural network analysis of an automobile air conditioning system. Energy Convers. Manag. 47(11–12), 1574–1587 (2006)CrossRef Hosoz, M., Ertunc, H.M.: Artificial neural network analysis of an automobile air conditioning system. Energy Convers. Manag. 47(11–12), 1574–1587 (2006)CrossRef
58.
go back to reference Ertunc, H.M., Hosoz, M.: Comparative analysis of an evaporative condenser using artificial neural network and adaptive neuro-fuzzy inference system. Int. J. Refrig. 31(8), 1426–1436 (2008)CrossRef Ertunc, H.M., Hosoz, M.: Comparative analysis of an evaporative condenser using artificial neural network and adaptive neuro-fuzzy inference system. Int. J. Refrig. 31(8), 1426–1436 (2008)CrossRef
59.
go back to reference Ding, L., Lv, J., Li, X., Li, L.: Support vector regression and ant colony optimization for HVAC cooling load prediction. In: International Symposium on Computer Communication Control and Automation (3CA), vol. 1 IEEE, Tainan, Taiwan, pp. 537–541 (2010) Ding, L., Lv, J., Li, X., Li, L.: Support vector regression and ant colony optimization for HVAC cooling load prediction. In: International Symposium on Computer Communication Control and Automation (3CA), vol. 1 IEEE, Tainan, Taiwan, pp. 537–541 (2010)
60.
go back to reference Becker, M., Oestreich, D., Hasse, H., Litz, L.: Fuzzy control for temperature and humidity in refrigeration systems. IEEE Trans., FM-4-2: 1607–1611 (1994) Becker, M., Oestreich, D., Hasse, H., Litz, L.: Fuzzy control for temperature and humidity in refrigeration systems. IEEE Trans., FM-4-2: 1607–1611 (1994)
61.
go back to reference He, M., Cai, W.J., Li, S.Y.: Multiple fuzzy model-based temperature predictive control for HVAC systems. Inf. Sci. 169(1), 155–174 (2005)MATHCrossRef He, M., Cai, W.J., Li, S.Y.: Multiple fuzzy model-based temperature predictive control for HVAC systems. Inf. Sci. 169(1), 155–174 (2005)MATHCrossRef
62.
go back to reference Soyguder, S., Alli, H.: An expert system for the humidity and temperature control in HVAC systems using ANFIS and optimization with fuzzy modeling approach. Energy Build. 41(3), 814–822 (2009)CrossRef Soyguder, S., Alli, H.: An expert system for the humidity and temperature control in HVAC systems using ANFIS and optimization with fuzzy modeling approach. Energy Build. 41(3), 814–822 (2009)CrossRef
63.
go back to reference Homoda, R.Z., Saharia, K.S.M., Almuribb, H.A.F., Nagia, F.H.: Gradient auto-tuned Takagi-Sugeno fuzzy forward control of a HVAC system using predicted mean vote index. Energy Build. 49(6), 254–267 (2012)CrossRef Homoda, R.Z., Saharia, K.S.M., Almuribb, H.A.F., Nagia, F.H.: Gradient auto-tuned Takagi-Sugeno fuzzy forward control of a HVAC system using predicted mean vote index. Energy Build. 49(6), 254–267 (2012)CrossRef
64.
go back to reference Khan, M.W., Choudhry, M.A., Zeeshan, M., Ali, A.: Adaptive fuzzy multivariable controller design based on genetic algorithm for an air handling unit. Energy 81(3), 477–488 (2015)CrossRef Khan, M.W., Choudhry, M.A., Zeeshan, M., Ali, A.: Adaptive fuzzy multivariable controller design based on genetic algorithm for an air handling unit. Energy 81(3), 477–488 (2015)CrossRef
65.
go back to reference Mustafaraj, G., Chen, J., Lowry, G.: Development of room temperature and relative humidity linear parametric models for an open office using BMS data. Energy Build. 42(3), 348–356 (2010)CrossRef Mustafaraj, G., Chen, J., Lowry, G.: Development of room temperature and relative humidity linear parametric models for an open office using BMS data. Energy Build. 42(3), 348–356 (2010)CrossRef
66.
go back to reference Penya, Y.K., Borges, C.E., Agote, D., Fernandez, I.: Short-term load forecasting in air-conditioned non-residential Buildings. In: 20th IEEE International Symposium on Industrial Electronics (ISIE), Gdansk, Poland, 1359–1364 27–30 June 2011 Penya, Y.K., Borges, C.E., Agote, D., Fernandez, I.: Short-term load forecasting in air-conditioned non-residential Buildings. In: 20th IEEE International Symposium on Industrial Electronics (ISIE), Gdansk, Poland, 1359–1364 27–30 June 2011
67.
go back to reference Wang, Y.W., Cai, W.J., Soh, Y.C., Li, S.J., Lu, L., Xie, L.: A simplified modeling of cooling coils for control and optimization of HVAC systems. Energy Convers. Manag. 45(18–19), 2915–2930 (2004)CrossRef Wang, Y.W., Cai, W.J., Soh, Y.C., Li, S.J., Lu, L., Xie, L.: A simplified modeling of cooling coils for control and optimization of HVAC systems. Energy Convers. Manag. 45(18–19), 2915–2930 (2004)CrossRef
68.
go back to reference Ghiaus, C., Chicinas, A., Inard, C.: Grey-box identification of air-handling unit elements. Control Eng. Pract. 15(4), 421–433 (2007)CrossRef Ghiaus, C., Chicinas, A., Inard, C.: Grey-box identification of air-handling unit elements. Control Eng. Pract. 15(4), 421–433 (2007)CrossRef
69.
go back to reference Yao, Y., Liu, S.: Transfer function model for dynamic response of wet cooling coils. Energy Convers. Manag. 49(12), 3612–3621 (2008)CrossRef Yao, Y., Liu, S.: Transfer function model for dynamic response of wet cooling coils. Energy Convers. Manag. 49(12), 3612–3621 (2008)CrossRef
70.
go back to reference Ferkl, L., Siroky, J.: Ceiling radiant cooling: comparison of ARMAX and sub-space identification modelling methods. Build. Environ. 45(2), 205–212 (2010)CrossRef Ferkl, L., Siroky, J.: Ceiling radiant cooling: comparison of ARMAX and sub-space identification modelling methods. Build. Environ. 45(2), 205–212 (2010)CrossRef
71.
go back to reference Jiang, Y.: State space method for analysis of the thermal behavior of rooms and calculation of air-conditioning load. ASHRAE Trans. 101(1), 122–132 (1995) Jiang, Y.: State space method for analysis of the thermal behavior of rooms and calculation of air-conditioning load. ASHRAE Trans. 101(1), 122–132 (1995)
72.
go back to reference He, X.D., Liu, S., Asada, H.H., Itoh, H.: Multivariable control of vapor compression systems. HVAC&R Res. 4(3), 205–230 (1998)CrossRef He, X.D., Liu, S., Asada, H.H., Itoh, H.: Multivariable control of vapor compression systems. HVAC&R Res. 4(3), 205–230 (1998)CrossRef
73.
go back to reference Yao, Y., Huang, M., Yang, K.: State-space model for dynamic behavior of vapor compression liquid chiller. Int. J. Refrig. 36(8), 2128–2147 (2013)CrossRef Yao, Y., Huang, M., Yang, K.: State-space model for dynamic behavior of vapor compression liquid chiller. Int. J. Refrig. 36(8), 2128–2147 (2013)CrossRef
74.
go back to reference Li, M., Wu, C.L., Zhao, S.Q., Yang, Y.: State-space model for airborne particles in multizone indoor environments. Atmos. Environ. 42(21), 5340–5349 (2008)CrossRef Li, M., Wu, C.L., Zhao, S.Q., Yang, Y.: State-space model for airborne particles in multizone indoor environments. Atmos. Environ. 42(21), 5340–5349 (2008)CrossRef
75.
go back to reference Qi, Q., Deng, S.: Multivariable control-oriented modeling of a direct expansion (DX) air conditioning (A/C) system. Int. J. Refrig. 31(5), 841–849 (2008)CrossRef Qi, Q., Deng, S.: Multivariable control-oriented modeling of a direct expansion (DX) air conditioning (A/C) system. Int. J. Refrig. 31(5), 841–849 (2008)CrossRef
76.
go back to reference Kumar, M., Kar, I.N., Ray, A.: State space based modeling and performance evaluation of an air-conditioning system. HVAC R Res. 14(5), 797–816 (2008)CrossRef Kumar, M., Kar, I.N., Ray, A.: State space based modeling and performance evaluation of an air-conditioning system. HVAC R Res. 14(5), 797–816 (2008)CrossRef
77.
go back to reference Moroşan, P.D., Bourdais, R., Dumur, D., Buisson, J.: Building temperature regulation using a distributed model predictive control. Energy Build. 42(9), 1445–1452 (2010)CrossRef Moroşan, P.D., Bourdais, R., Dumur, D., Buisson, J.: Building temperature regulation using a distributed model predictive control. Energy Build. 42(9), 1445–1452 (2010)CrossRef
78.
go back to reference Prívara, S., Široký, J., Cigler, J.: Model predictive control of a building heating system: the first experience. Energy Build. 43(2–3), 564–572 (2011)CrossRef Prívara, S., Široký, J., Cigler, J.: Model predictive control of a building heating system: the first experience. Energy Build. 43(2–3), 564–572 (2011)CrossRef
79.
go back to reference Balakrishnan, V.K.: Graph Theory. Shaum’s Outline Series, New York (1997)MATH Balakrishnan, V.K.: Graph Theory. Shaum’s Outline Series, New York (1997)MATH
80.
go back to reference Garg, R.K., Agrawal, V.P., Gupta, V.K.: Selection of power plants by evaluation and comparison using graph theoretic methodology. Electr. Power Energy Syst. 28(3), 429–435 (2006)CrossRef Garg, R.K., Agrawal, V.P., Gupta, V.K.: Selection of power plants by evaluation and comparison using graph theoretic methodology. Electr. Power Energy Syst. 28(3), 429–435 (2006)CrossRef
81.
go back to reference Prabhakaran, R.T.D., Agrawal, V.P.: Structural modeling and analysis of composite product system: a graph theoretic approach. J. Compos. Mater. 40(22), 1987–2007 (2006)CrossRef Prabhakaran, R.T.D., Agrawal, V.P.: Structural modeling and analysis of composite product system: a graph theoretic approach. J. Compos. Mater. 40(22), 1987–2007 (2006)CrossRef
82.
go back to reference Grekas, D.N., Frangopoulos, C.A.: Automatic synthesis of mathematical models using graph theory for optimisation of thermal energy systems. Energy Convers. Manag. 48(12), 2818–2826 (2007)CrossRef Grekas, D.N., Frangopoulos, C.A.: Automatic synthesis of mathematical models using graph theory for optimisation of thermal energy systems. Energy Convers. Manag. 48(12), 2818–2826 (2007)CrossRef
83.
go back to reference Singh, V., Agrawal, V.P.: Structural modelling and integrative analysis of manufacturing systems using graph theoretic approach. J. Manuf. Technol. Manage. 19(7), 844–870 (2008)CrossRef Singh, V., Agrawal, V.P.: Structural modelling and integrative analysis of manufacturing systems using graph theoretic approach. J. Manuf. Technol. Manage. 19(7), 844–870 (2008)CrossRef
84.
go back to reference Wang, T., Ding, G., Duan, Z., Ren, T., Chen, J., Pu, H.: A distributed-parameter model for LNG spiral wound heat exchanger based on graph theory. Appl. Therm. Eng. 81(1), 102–113 (2015)CrossRef Wang, T., Ding, G., Duan, Z., Ren, T., Chen, J., Pu, H.: A distributed-parameter model for LNG spiral wound heat exchanger based on graph theory. Appl. Therm. Eng. 81(1), 102–113 (2015)CrossRef
85.
go back to reference Braun, J.E.: Reducing energy costs and peak electrical demands through optimal control of building thermal storage. ASHRAE Trans. 96(part 1), 587–601 (1990) Braun, J.E.: Reducing energy costs and peak electrical demands through optimal control of building thermal storage. ASHRAE Trans. 96(part 1), 587–601 (1990)
86.
go back to reference Kawashima, M., Dorgan, C.E., Mitchell, J.W.: Hourly thermal load prediction for the next 24 hours by ARIMA, EWMA, LR, and an artificial neural network. ASHRAE Trans. 101(part 1), 186–200 (1995) Kawashima, M., Dorgan, C.E., Mitchell, J.W.: Hourly thermal load prediction for the next 24 hours by ARIMA, EWMA, LR, and an artificial neural network. ASHRAE Trans. 101(part 1), 186–200 (1995)
87.
go back to reference Hwang, R.C., Huang, H.C., Chen, Y.J., Hsieh, J.G., Chen, H.C., Chuang, C.W.: Selection of influencing factors for power load forecasting by grey relation analysis. In: Second National Conference on Grey Theory and Applications, Taiwan, pp. 109–113 (1997) Hwang, R.C., Huang, H.C., Chen, Y.J., Hsieh, J.G., Chen, H.C., Chuang, C.W.: Selection of influencing factors for power load forecasting by grey relation analysis. In: Second National Conference on Grey Theory and Applications, Taiwan, pp. 109–113 (1997)
88.
go back to reference Neto, A.H., Fiorelli, F.A.S.: Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy Build. 40(12), 2169–2176 (2008)CrossRef Neto, A.H., Fiorelli, F.A.S.: Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energy Build. 40(12), 2169–2176 (2008)CrossRef
89.
go back to reference Zhou, Q., Wang, S., Xu, X., Xiao, F.: A grey-box model of next-day building thermal load prediction for energy-efficient control. Int. J. Energy Res. 32(15), 1418–1431 (2008)CrossRef Zhou, Q., Wang, S., Xu, X., Xiao, F.: A grey-box model of next-day building thermal load prediction for energy-efficient control. Int. J. Energy Res. 32(15), 1418–1431 (2008)CrossRef
90.
go back to reference Guo, J.J., Wu, J.Y., Wang, R.Z.: A new approach to energy consumption prediction of domestic heat pump water heater based on grey system theory. Energy Build. 43(6), 1273–1279 (2011)CrossRef Guo, J.J., Wu, J.Y., Wang, R.Z.: A new approach to energy consumption prediction of domestic heat pump water heater based on grey system theory. Energy Build. 43(6), 1273–1279 (2011)CrossRef
91.
go back to reference Chen, H.: The Validity of the Theory and Its Application of Combination Forecast Methods. Science Press, Beijing (China) (2008) Chen, H.: The Validity of the Theory and Its Application of Combination Forecast Methods. Science Press, Beijing (China) (2008)
92.
go back to reference Granger, C.W.J., Ramanathan, R.: Improved methods of combining forecasts. J. Forecast. 3(3), 197–204 (1984)CrossRef Granger, C.W.J., Ramanathan, R.: Improved methods of combining forecasts. J. Forecast. 3(3), 197–204 (1984)CrossRef
93.
go back to reference Braun, J.E., Klein, S.A., Mitchell, J.W., Beckman, W.A.: Methodologies for optimal control of chilled water systems without storage. ASHRAE Transact. 95(1), 652–662 (1989) Braun, J.E., Klein, S.A., Mitchell, J.W., Beckman, W.A.: Methodologies for optimal control of chilled water systems without storage. ASHRAE Transact. 95(1), 652–662 (1989)
94.
go back to reference Olson, R.T., Liebman, S.: Optimization of a chilled water plant using sequential quadratic programming. Eng. Optim. 15(1), 171–191 (1990)CrossRef Olson, R.T., Liebman, S.: Optimization of a chilled water plant using sequential quadratic programming. Eng. Optim. 15(1), 171–191 (1990)CrossRef
95.
go back to reference Ahn, B.C., Mitchell, J.W.: Optimal control development for chilled water plants using a quadratic representation. Energy Build. 33(4), 371–378 (2001)CrossRef Ahn, B.C., Mitchell, J.W.: Optimal control development for chilled water plants using a quadratic representation. Energy Build. 33(4), 371–378 (2001)CrossRef
96.
go back to reference Chang, Y.C.: Application of genetic algorithm to the optimal chilled water supply temperature calculation of air-conditioning systems for saving energy. Energy Res. 31(8), 796–810 (2007)CrossRef Chang, Y.C.: Application of genetic algorithm to the optimal chilled water supply temperature calculation of air-conditioning systems for saving energy. Energy Res. 31(8), 796–810 (2007)CrossRef
97.
go back to reference Engdahl, F., Johansson, D.: Optimal supply air temperature with respect to energy use in a variable air volume system. Energy Build. 36(3), 205–218 (2004)CrossRef Engdahl, F., Johansson, D.: Optimal supply air temperature with respect to energy use in a variable air volume system. Energy Build. 36(3), 205–218 (2004)CrossRef
98.
go back to reference Xu, X., Wang, S., Sun, Z., Xiao, F.: A model-based optimal ventilation control strategy of multi-zone VAV air-conditioning systems. Appl. Therm. Eng. 29(1), 91–104 (2009)CrossRef Xu, X., Wang, S., Sun, Z., Xiao, F.: A model-based optimal ventilation control strategy of multi-zone VAV air-conditioning systems. Appl. Therm. Eng. 29(1), 91–104 (2009)CrossRef
99.
go back to reference Mossolly, M., Ghali, K., Ghaddar, N.: Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm. Energy 34(1), 58–66 (2009)CrossRef Mossolly, M., Ghali, K., Ghaddar, N.: Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm. Energy 34(1), 58–66 (2009)CrossRef
100.
go back to reference Sun, J., Reddy, A.: Optimal control of building HVAC and R systems using complete simulation-based sequential quadratic programming (CSB-SQP). Build. Environ. 40(5), 657–669 (2005)CrossRef Sun, J., Reddy, A.: Optimal control of building HVAC and R systems using complete simulation-based sequential quadratic programming (CSB-SQP). Build. Environ. 40(5), 657–669 (2005)CrossRef
101.
go back to reference Hanby, V.I., Wright, J.A.: HVAC optimization studies: component modeling methodology. Build. Serv. Eng. Res. Technol. 10(1), 35–39 (1989)CrossRef Hanby, V.I., Wright, J.A.: HVAC optimization studies: component modeling methodology. Build. Serv. Eng. Res. Technol. 10(1), 35–39 (1989)CrossRef
102.
go back to reference Zaheer-Uddin, M., Zheng, G.R.: Optimal control of time-scheduled heating, ventilating and air conditioning processes in buildings. Energy Convers. Manag. 41(1), 49–60 (2000)CrossRef Zaheer-Uddin, M., Zheng, G.R.: Optimal control of time-scheduled heating, ventilating and air conditioning processes in buildings. Energy Convers. Manag. 41(1), 49–60 (2000)CrossRef
103.
go back to reference Chow, T.T., Zhang, G.Q., Lin, Z., Song, C.L.: Global optimization of absorption chiller system by generic algorithm and neural network. Energy Build. 34(1), 103–109 (2000)CrossRef Chow, T.T., Zhang, G.Q., Lin, Z., Song, C.L.: Global optimization of absorption chiller system by generic algorithm and neural network. Energy Build. 34(1), 103–109 (2000)CrossRef
104.
go back to reference Huang, L.: Using genetic algorithms to optimize controller parameters for HVAC systems. Energy Build. 26(2), 277–282 (1997)CrossRef Huang, L.: Using genetic algorithms to optimize controller parameters for HVAC systems. Energy Build. 26(2), 277–282 (1997)CrossRef
105.
go back to reference Fong, K.F., Hanby, V.I., Chow, T.T.: System optimization for HVAC energy management using the robust evolutionary algorithm. Appl. Therm. Eng. 29(11–12), 2327–2334 (2009)CrossRef Fong, K.F., Hanby, V.I., Chow, T.T.: System optimization for HVAC energy management using the robust evolutionary algorithm. Appl. Therm. Eng. 29(11–12), 2327–2334 (2009)CrossRef
106.
go back to reference Kido, T., Takag, K., Nakanishi, M.: Analysis and comparisons of genetic algorithm, simulated annealing, TABU search, and combination algorithm. Informatics 18(4), 399–410 (1994) Kido, T., Takag, K., Nakanishi, M.: Analysis and comparisons of genetic algorithm, simulated annealing, TABU search, and combination algorithm. Informatics 18(4), 399–410 (1994)
107.
go back to reference Arturo, M.C., Lorenz, T.B.: A stable elemental decomposition for dynamic process optimization. J. Comput. Appl. Math. 120(1), 41–57 (2000)MathSciNetMATH Arturo, M.C., Lorenz, T.B.: A stable elemental decomposition for dynamic process optimization. J. Comput. Appl. Math. 120(1), 41–57 (2000)MathSciNetMATH
108.
go back to reference Thi, H.A.L., Pham, D.T., Thoai, N.V.: Combination between global and local methods for solving an optimization problem over the efficient set. Eur. J. Oper. Res. 142(2), 258–270 (2002)MathSciNetMATHCrossRef Thi, H.A.L., Pham, D.T., Thoai, N.V.: Combination between global and local methods for solving an optimization problem over the efficient set. Eur. J. Oper. Res. 142(2), 258–270 (2002)MathSciNetMATHCrossRef
109.
go back to reference Huang, Y.J., Reklaitis, G.V., Venkatasubramanian, V.: Model decomposition based method for solving general dynamic optimization problems. Comput. Chem. Eng. 26(6), 863–873 (2002)CrossRef Huang, Y.J., Reklaitis, G.V., Venkatasubramanian, V.: Model decomposition based method for solving general dynamic optimization problems. Comput. Chem. Eng. 26(6), 863–873 (2002)CrossRef
110.
111.
go back to reference Yu, D., Li, H., Ni, L., Yu, Y.: An improved virtual calibration of a supply air temperature sensor in rooftop air conditioning units. HVAC & R Res. J. 17(5), 798–812 (2011) Yu, D., Li, H., Ni, L., Yu, Y.: An improved virtual calibration of a supply air temperature sensor in rooftop air conditioning units. HVAC & R Res. J. 17(5), 798–812 (2011)
112.
go back to reference United Nations.: Role of measurement and calibration in the manufacture of products for the global market (2006) United Nations.: Role of measurement and calibration in the manufacture of products for the global market (2006)
113.
go back to reference Li, Z., Huang, G.: Preventive approach to determine sensor importance and maintenance requirements. Autom. Constr. 31(3), 307–312 (2013) Li, Z., Huang, G.: Preventive approach to determine sensor importance and maintenance requirements. Autom. Constr. 31(3), 307–312 (2013)
114.
go back to reference Huang, Y., Qian, X., Chen, S.: Multi-sensor calibration through iterative registration and fusion. Comput. Aided Des. 41(2), 240–255 (2009)CrossRef Huang, Y., Qian, X., Chen, S.: Multi-sensor calibration through iterative registration and fusion. Comput. Aided Des. 41(2), 240–255 (2009)CrossRef
115.
go back to reference Djuric, N., Huang, G., Novakovic, V.: Data fusion heat pump performance estimation. Energy Build. 43(6), 621–630 (2011)CrossRef Djuric, N., Huang, G., Novakovic, V.: Data fusion heat pump performance estimation. Energy Build. 43(6), 621–630 (2011)CrossRef
116.
go back to reference Mitchell, H.B.: Data Fusion: Concepts and Ideas, 2nd ed. Springer (2012) Mitchell, H.B.: Data Fusion: Concepts and Ideas, 2nd ed. Springer (2012)
117.
go back to reference Yu, D., Li, H., Yu, Y., Xiong, J.: Virtual calibration of a supply air temperature sensor in rooftop air conditioning units. HVAC&R Res. 17(1), 31–50 (2011)CrossRef Yu, D., Li, H., Yu, Y., Xiong, J.: Virtual calibration of a supply air temperature sensor in rooftop air conditioning units. HVAC&R Res. 17(1), 31–50 (2011)CrossRef
118.
go back to reference Whitehouse, K., Culler, D.: Calibration as parameter estimation in sensor networks. In: Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, pp. 59–67 (2002) Whitehouse, K., Culler, D.: Calibration as parameter estimation in sensor networks. In: Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, pp. 59–67 (2002)
119.
go back to reference Bychkovskiy, V., Megerian, S., Estrin, D., Potkonjak, M.: A collaborative approach to in-place sensor calibration. Lect. Notes Comput. Sci. 263(2), 301–316 (2003)MATHCrossRef Bychkovskiy, V., Megerian, S., Estrin, D., Potkonjak, M.: A collaborative approach to in-place sensor calibration. Lect. Notes Comput. Sci. 263(2), 301–316 (2003)MATHCrossRef
120.
go back to reference Dulev, V., Ermishin, S., Khoteev, N., Lopatin, A., Shabanov, P., Menshikov, A., Startsev, A.: Automated measuring system designed to calibrate measuring devices using virtual standards technology. In: 2004 IEEE Autotestcon, pp. 158–164 Dulev, V., Ermishin, S., Khoteev, N., Lopatin, A., Shabanov, P., Menshikov, A., Startsev, A.: Automated measuring system designed to calibrate measuring devices using virtual standards technology. In: 2004 IEEE Autotestcon, pp. 158–164
121.
go back to reference Fisher, J.W., Moses, R.L., Willsky, A.S.: Nonparametric Belief Propagation for Self-calibration in Sensor Networks. IPSN’ 04, Berkeley, California, 26–27 April 2004 Fisher, J.W., Moses, R.L., Willsky, A.S.: Nonparametric Belief Propagation for Self-calibration in Sensor Networks. IPSN’ 04, Berkeley, California, 26–27 April 2004
122.
go back to reference Balzano, L., Nowak, R.: Blind calibration of sensor networks. In: Proceedings of IPSN’07. Cambridge, Massachusetts, 25–27 April 2007 Balzano, L., Nowak, R.: Blind calibration of sensor networks. In: Proceedings of IPSN’07. Cambridge, Massachusetts, 25–27 April 2007
123.
go back to reference Yu, D., Li, H., Yang, M.: A virtual supply airflow rate meter for rooftop air-conditioning units. Build. Environ. 46(6), 1292–1302 (2011)CrossRef Yu, D., Li, H., Yang, M.: A virtual supply airflow rate meter for rooftop air-conditioning units. Build. Environ. 46(6), 1292–1302 (2011)CrossRef
124.
go back to reference Tan, R., Xing, G., Liu, X., Yao, J., Yuan, Z.: Adaptive calibration for fusion-based cyber-physical system. ACM Trans. Embed. Comput. Syst. 11(4), 80, (1–25) (2012) Tan, R., Xing, G., Liu, X., Yao, J., Yuan, Z.: Adaptive calibration for fusion-based cyber-physical system. ACM Trans. Embed. Comput. Syst. 11(4), 80, (1–25) (2012)
125.
go back to reference Mosh, B., Rashidi, F.: Self-tuning based fuzzy PID controllers: application to control of nonlinear HVAC systems. In: Proceedings of 5th International conference: Intelligent Data Engineering and Automated Learning. Exeter, UK (2004) Mosh, B., Rashidi, F.: Self-tuning based fuzzy PID controllers: application to control of nonlinear HVAC systems. In: Proceedings of 5th International conference: Intelligent Data Engineering and Automated Learning. Exeter, UK (2004)
126.
go back to reference Yu, Y.: Model-based multivariate control of conditioning systems for office buildings (PhD. thesis). Carnegie Mellon University (2012) Yu, Y.: Model-based multivariate control of conditioning systems for office buildings (PhD. thesis). Carnegie Mellon University (2012)
127.
go back to reference Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob Hill Publishing (2009) Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob Hill Publishing (2009)
128.
go back to reference Camacho, E.F., Bordons, C.: Model Predictive Control in the Process Industry. Springer, Berlin (1995) Camacho, E.F., Bordons, C.: Model Predictive Control in the Process Industry. Springer, Berlin (1995)
129.
go back to reference Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng. Pract. 11(7), 733–764 (2003)CrossRef Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng. Pract. 11(7), 733–764 (2003)CrossRef
130.
go back to reference Zhang, Y., Hanby, V.I.: Model-based control of renewable energy systems in buildings. HVAC&R Res. 12(3a), 739–760 (2006)CrossRef Zhang, Y., Hanby, V.I.: Model-based control of renewable energy systems in buildings. HVAC&R Res. 12(3a), 739–760 (2006)CrossRef
131.
go back to reference Yuan, S., Perez, R.: Multiple-zone ventilation and temperature control of a single-duct VAV system using model predictive strategy. Energy Build. 38(10), 1248–1261 (2006)CrossRef Yuan, S., Perez, R.: Multiple-zone ventilation and temperature control of a single-duct VAV system using model predictive strategy. Energy Build. 38(10), 1248–1261 (2006)CrossRef
132.
go back to reference Wang, S., Ma, Z.: Supervisory and optimal control of building HVAC systems: a review. HVAC&R Res. 14(1), 3–32 (2008)CrossRef Wang, S., Ma, Z.: Supervisory and optimal control of building HVAC systems: a review. HVAC&R Res. 14(1), 3–32 (2008)CrossRef
133.
go back to reference Freire, R.Z., Oliveira, G.H.C., Mendes, N.: Predictive controllers for thermal comfort optimization and energy savings. Energy Build. 40(7), 1352–1365 (2008)CrossRef Freire, R.Z., Oliveira, G.H.C., Mendes, N.: Predictive controllers for thermal comfort optimization and energy savings. Energy Build. 40(7), 1352–1365 (2008)CrossRef
134.
go back to reference Hazyuk, I., Ghiaus, C., Penhouet, D.: Optimal temperature control of intermittently heated buildings using model predictive control: part II—control algorithm. Build. Environ. 51(5), 388–394 (2012)CrossRef Hazyuk, I., Ghiaus, C., Penhouet, D.: Optimal temperature control of intermittently heated buildings using model predictive control: part II—control algorithm. Build. Environ. 51(5), 388–394 (2012)CrossRef
Metadata
Title
Introduction
Authors
Ye Yao
Yuebin Yu
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-53313-0_1