Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

1. Introduction

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The elementary computational unit of the brain is the spiking neuron, which generates a sequence of short impulses, or spikes, in response to an analog input. The integrate-and-fire (IF) neuron is a popular model of the spiking neuron, given its significance from a biological as well as an engineering perspective. This chapter introduces the main literature concepts used in this book, and gives motivation for three research problems, given as follows. The first problem consists in developing new mathematical formulations for the encoding and decoding of analog signals using IF neurons. Another important problem that is being addressed in this book is that of inferring cascade models for sensory processing circuits, consisting of filters in series with IF neurons, directly from input-output observations. The third problem considered is the lack of a general theory to characterize the processing of information by circuits that operate with spike trains, or to design circuits that implement particular processing tasks, in a similar fashion to classical analog and digital filters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Chen S, Billings S (1989) Representations of non-linear systems: the narmax model. Int J Control 49(3):1013–1032CrossRefMATH Chen S, Billings S (1989) Representations of non-linear systems: the narmax model. Int J Control 49(3):1013–1032CrossRefMATH
go back to reference Churchland PS, Sejnowski TJ (1992) The computational brain. The MIT press, Cambridge Churchland PS, Sejnowski TJ (1992) The computational brain. The MIT press, Cambridge
go back to reference Dayan P, Abbott LF (2001) Theoretical neuroscience, vol 806. MIT Press, Cambridge, MAMATH Dayan P, Abbott LF (2001) Theoretical neuroscience, vol 806. MIT Press, Cambridge, MAMATH
go back to reference Gontier D, Vetterli M (2014) Sampling based on timing: time encoding machines on shift-invariant subspaces. Appl Comput Harmonic Anal 36(1):63–78MathSciNetCrossRefMATH Gontier D, Vetterli M (2014) Sampling based on timing: time encoding machines on shift-invariant subspaces. Appl Comput Harmonic Anal 36(1):63–78MathSciNetCrossRefMATH
go back to reference Izhikevich EM (2007) Dynamical systems in neuroscience. MIT press, Cambridge Izhikevich EM (2007) Dynamical systems in neuroscience. MIT press, Cambridge
go back to reference Lapicque L (1907) Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. J Physiol Pathol Gen 9(1):620–635 Lapicque L (1907) Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. J Physiol Pathol Gen 9(1):620–635
go back to reference Lazar AA (2004) Time encoding with an integrate-and-fire neuron with a refractory period. Neurocomputing 58:53–58MathSciNetCrossRef Lazar AA (2004) Time encoding with an integrate-and-fire neuron with a refractory period. Neurocomputing 58:53–58MathSciNetCrossRef
go back to reference Lazar AA (2006) A simple model of spike processing. Neurocomputing 69(10–12):1081–1085 Lazar AA (2006) A simple model of spike processing. Neurocomputing 69(10–12):1081–1085
go back to reference Lazar AA, Tóth LT (2003) Time encoding and perfect recovery of bandlimited signals. In: ICASSP, vol 6, pp 709–712 Lazar AA, Tóth LT (2003) Time encoding and perfect recovery of bandlimited signals. In: ICASSP, vol 6, pp 709–712
go back to reference Lazar AA, Pnevmatikakis EA (2008) Faithful representation of stimuli with a population of integrate-and-fire neurons. Neural Comput 20(11):2715–2744 Lazar AA, Pnevmatikakis EA (2008) Faithful representation of stimuli with a population of integrate-and-fire neurons. Neural Comput 20(11):2715–2744
go back to reference Lazar AA, Slutskiy YB (2010) Identifying dendritic processing. In: Lafferty J, Williams CKI, Shawe-Taylor J, Zemel R, Culotta A (eds) Advances in neural information processing systems, vol 23, pp 1261–1269 (spotlight presentation) Lazar AA, Slutskiy YB (2010) Identifying dendritic processing. In: Lafferty J, Williams CKI, Shawe-Taylor J, Zemel R, Culotta A (eds) Advances in neural information processing systems, vol 23, pp 1261–1269 (spotlight presentation)
go back to reference Lazar AA, Slutskiy Y (2013) Multisensory encoding, decoding, and identification. In: Advances in neural information processing systems, pp 3183–3191 Lazar AA, Slutskiy Y (2013) Multisensory encoding, decoding, and identification. In: Advances in neural information processing systems, pp 3183–3191
go back to reference Lazar AA, Slutskiy YB (2014) Functional identification of spike-processing neural circuits. Neural Comput 26(2):264–305 Lazar AA, Slutskiy YB (2014) Functional identification of spike-processing neural circuits. Neural Comput 26(2):264–305
go back to reference Lazar AA, Slutskiy YB (2015) Spiking neural circuits with dendritic stimulus processors. J Comput Neurosci 38(1):1–24CrossRef Lazar AA, Slutskiy YB (2015) Spiking neural circuits with dendritic stimulus processors. J Comput Neurosci 38(1):1–24CrossRef
go back to reference Mead C (1990) Neuromorphic electronic systems. Proc IEEE 78(10):1629–1636CrossRef Mead C (1990) Neuromorphic electronic systems. Proc IEEE 78(10):1629–1636CrossRef
go back to reference Roza E (1997) Analog-to-digital conversion via duty-cycle modulation. IEEE Trans Circuits Syst II Analog Digital Signal Process 44(11):907–914CrossRef Roza E (1997) Analog-to-digital conversion via duty-cycle modulation. IEEE Trans Circuits Syst II Analog Digital Signal Process 44(11):907–914CrossRef
go back to reference Tuckwell H (1988) Introduction to theoretical neurobiology. Linear cable theory and dendritic structure, vol 1. Cambridge University Press, Cambridge Tuckwell H (1988) Introduction to theoretical neurobiology. Linear cable theory and dendritic structure, vol 1. Cambridge University Press, Cambridge
go back to reference Wu MCK, David SV, Gallant JL (2006) Complete functional characterization of sensory neurons by system identification. Annu Rev Neurosci 29:477–505CrossRef Wu MCK, David SV, Gallant JL (2006) Complete functional characterization of sensory neurons by system identification. Annu Rev Neurosci 29:477–505CrossRef
Metadata
Title
Introduction
Author
Dorian Florescu
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-57081-5_1