Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Introduction

Author : Xin Wu

Published in: Influence of Particle Beam Irradiation on the Structure and Properties of Graphene

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, the object of this work-graphene, is detailedly introduced, including its origin, structure and properties, preparation methods and applications. Then, to realize its applications, the content of this work is proposed, i.e. processing of graphene by particle beam irradiation. After that, the methodologies used in this work are presented. This chapter can give us the idea why we should do this research and how to do it.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chen YS, Huang Y et al (2013) Graphene: new type of two-dimensional carbon nanomaterials. Science Press, Beijing (in Chinese) Chen YS, Huang Y et al (2013) Graphene: new type of two-dimensional carbon nanomaterials. Science Press, Beijing (in Chinese)
2.
go back to reference Kroto HW, Health JR, O’Brien SC et al (1985) C60: Buckminsterfullerene. Nature 318:162–163CrossRef Kroto HW, Health JR, O’Brien SC et al (1985) C60: Buckminsterfullerene. Nature 318:162–163CrossRef
3.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
4.
go back to reference Mermin ND (1968) Crystalline order in two dimensions. Phys Rev 176:250–254CrossRef Mermin ND (1968) Crystalline order in two dimensions. Phys Rev 176:250–254CrossRef
5.
go back to reference Novoselov K, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov K, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
6.
go back to reference Boehm HP, Setton R, Stumpp E (1986) Nomenclature and terminology of graphite intercalation compounds. Carbon 24:241–245CrossRef Boehm HP, Setton R, Stumpp E (1986) Nomenclature and terminology of graphite intercalation compounds. Carbon 24:241–245CrossRef
7.
go back to reference Boehm HP, Setton R, Stumpp E (1994) Nomenclature and terminology of graphite intercalation compounds. Pure Appl Chem 66:1893–1901CrossRef Boehm HP, Setton R, Stumpp E (1994) Nomenclature and terminology of graphite intercalation compounds. Pure Appl Chem 66:1893–1901CrossRef
8.
go back to reference Fitzer E, Kochling KH, Boehm HP et al (1995) Recommended terminology for the description of carbon as a solid. Pure Appl Chem 67:473–506CrossRef Fitzer E, Kochling KH, Boehm HP et al (1995) Recommended terminology for the description of carbon as a solid. Pure Appl Chem 67:473–506CrossRef
9.
go back to reference McNaught AD, Wilkinson A (1997) IUPAC in compendium of chemical terminology, 2nd edn. Blackwell Scientific, Oxford McNaught AD, Wilkinson A (1997) IUPAC in compendium of chemical terminology, 2nd edn. Blackwell Scientific, Oxford
10.
go back to reference China graphene industry technology innovation strategic alliance, terms and definitions of graphene materials (2014) Q/LM01CGS001–2013 (in Chinese) China graphene industry technology innovation strategic alliance, terms and definitions of graphene materials (2014) Q/LM01CGS001–2013 (in Chinese)
11.
12.
go back to reference Zhu HW, Xu ZP, Xie D et al (2011) Graphene-the structure, preparation methods and properties characterization. Tsinghua University Press, Beijing (in Chinese) Zhu HW, Xu ZP, Xie D et al (2011) Graphene-the structure, preparation methods and properties characterization. Tsinghua University Press, Beijing (in Chinese)
13.
go back to reference Hass J, de Heer WA, Conrad EH (2008) The growth and morphology of epitaxial multilayer graphene. J Phys Condens Mater 20:323202CrossRef Hass J, de Heer WA, Conrad EH (2008) The growth and morphology of epitaxial multilayer graphene. J Phys Condens Mater 20:323202CrossRef
14.
go back to reference Meyer JC, Geim AK, Katsnelson MI et al (2007) The structure of suspended graphene sheets. Nature 446:60–63CrossRef Meyer JC, Geim AK, Katsnelson MI et al (2007) The structure of suspended graphene sheets. Nature 446:60–63CrossRef
15.
go back to reference Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385CrossRef Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385CrossRef
16.
go back to reference Frank IW, Tanenbaum DM (2007) Mechanical properties of suspended graphene sheets. J Vac Sci Technol B 25:2558–2561CrossRef Frank IW, Tanenbaum DM (2007) Mechanical properties of suspended graphene sheets. J Vac Sci Technol B 25:2558–2561CrossRef
17.
go back to reference Huang X, Qi X, Boey F et al (2012) Graphene-based composites. Chem Soc Rev 41:666–686CrossRef Huang X, Qi X, Boey F et al (2012) Graphene-based composites. Chem Soc Rev 41:666–686CrossRef
18.
go back to reference Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef
19.
go back to reference Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef
20.
go back to reference Zhang YB, Tan YW, Stormer HL et al (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201CrossRef Zhang YB, Tan YW, Stormer HL et al (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201CrossRef
21.
go back to reference Novoselov KS, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451CrossRef Novoselov KS, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451CrossRef
22.
go back to reference Elias DC, Nair RR, Mohiuddin T et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 323:610–613CrossRef Elias DC, Nair RR, Mohiuddin T et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 323:610–613CrossRef
23.
go back to reference Castro N, Guinea F, Peres N et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109CrossRef Castro N, Guinea F, Peres N et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109CrossRef
24.
go back to reference Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRef Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRef
25.
go back to reference Wang F, Zhang Y, Tian C et al (2008) Gate-variable optical transitions in graphene. Science 320:206CrossRef Wang F, Zhang Y, Tian C et al (2008) Gate-variable optical transitions in graphene. Science 320:206CrossRef
26.
go back to reference Bonaccorso F, Sun Z, Hasan T et al (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–612CrossRef Bonaccorso F, Sun Z, Hasan T et al (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–612CrossRef
27.
go back to reference Hendry E, Hale PJ, Moger J et al (2010) Coherent nonlinear optical response of graphene. Phys Rev Lett 105:097401CrossRef Hendry E, Hale PJ, Moger J et al (2010) Coherent nonlinear optical response of graphene. Phys Rev Lett 105:097401CrossRef
28.
go back to reference Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581CrossRef Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581CrossRef
29.
go back to reference Balandin AA, Ghosh S, Bao WZ et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao WZ et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
30.
go back to reference Zuo X, He S, Li D et al (2010) Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces. Langmuir 26:1936–1939CrossRef Zuo X, He S, Li D et al (2010) Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces. Langmuir 26:1936–1939CrossRef
31.
go back to reference Stoller MD, Park SJ, Zhu YW et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRef Stoller MD, Park SJ, Zhu YW et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRef
32.
go back to reference Schniepp HC, Li JL, McAllister MJ et al (2006) Functionalized single graphene sheets derive from splitting graphite oxide. J Phys Chem B 110:8535–8539CrossRef Schniepp HC, Li JL, McAllister MJ et al (2006) Functionalized single graphene sheets derive from splitting graphite oxide. J Phys Chem B 110:8535–8539CrossRef
33.
go back to reference Stankovich S, Piner RD, Chen XQ et al (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158 Stankovich S, Piner RD, Chen XQ et al (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158
34.
go back to reference Concha BN, Eugenio C, Carlos MG et al (2012) Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions. Nanoscale 4:3977–3982CrossRef Concha BN, Eugenio C, Carlos MG et al (2012) Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions. Nanoscale 4:3977–3982CrossRef
35.
go back to reference Berger C, Song Z, Li T et al (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912–19916CrossRef Berger C, Song Z, Li T et al (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912–19916CrossRef
36.
go back to reference Deng D, Pan X, Zhang H et al (2010) Freestanding graphene by thermal splitting of silicon carbide granules. Adv Mater 22:2168–2171CrossRef Deng D, Pan X, Zhang H et al (2010) Freestanding graphene by thermal splitting of silicon carbide granules. Adv Mater 22:2168–2171CrossRef
37.
go back to reference Hu B, Ago H, Orofeo CM et al (2012) On the nucleation of graphene by chemical vapor deposition. New J Chem 36:73–77CrossRef Hu B, Ago H, Orofeo CM et al (2012) On the nucleation of graphene by chemical vapor deposition. New J Chem 36:73–77CrossRef
38.
go back to reference Li XL, Wang XR, Zhang L et al (2008) Chemically derived ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRef Li XL, Wang XR, Zhang L et al (2008) Chemically derived ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRef
39.
go back to reference Wang X, Zhi LJ, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327CrossRef Wang X, Zhi LJ, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327CrossRef
40.
go back to reference Miao XC, Tongay S, Petterson MK et al (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 12:2745–2750CrossRef Miao XC, Tongay S, Petterson MK et al (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 12:2745–2750CrossRef
41.
go back to reference Wang JT, Ball JM, Barea EM et al (2014) Low-temperature proceed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett 14:724–730CrossRef Wang JT, Ball JM, Barea EM et al (2014) Low-temperature proceed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett 14:724–730CrossRef
42.
go back to reference Li XM, Zhu HW, Wang KL et al (2010) Graphene-on-silicon Schottky junction solar cells. Adv Mater 22:2743–2748CrossRef Li XM, Zhu HW, Wang KL et al (2010) Graphene-on-silicon Schottky junction solar cells. Adv Mater 22:2743–2748CrossRef
43.
go back to reference Han SJ, Garcia AV, Oida S et al (2013) Graphene radio frequency receiver integrated circuit. Nat Commun 5:3086 Han SJ, Garcia AV, Oida S et al (2013) Graphene radio frequency receiver integrated circuit. Nat Commun 5:3086
44.
go back to reference Lin YM, Garcia AV, Han SJ et al (2011) Wafer-scale graphene integrated circuit. Science 332:1294–1297CrossRef Lin YM, Garcia AV, Han SJ et al (2011) Wafer-scale graphene integrated circuit. Science 332:1294–1297CrossRef
45.
go back to reference Bunch JS, van der Zande AM, Verbridge SS et al (2007) Electromechanical resonators from graphene sheets. Science 315:490–493CrossRef Bunch JS, van der Zande AM, Verbridge SS et al (2007) Electromechanical resonators from graphene sheets. Science 315:490–493CrossRef
46.
go back to reference Smith AD, Niklaus F, Paussa A et al (2013) Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett 13:3237–3242CrossRef Smith AD, Niklaus F, Paussa A et al (2013) Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett 13:3237–3242CrossRef
47.
go back to reference Rojas FM, Rossier JF, Brey L et al (2008) Performance limits of graphene-ribbon field-effect transistors. Phys Rev B 77:045301CrossRef Rojas FM, Rossier JF, Brey L et al (2008) Performance limits of graphene-ribbon field-effect transistors. Phys Rev B 77:045301CrossRef
48.
go back to reference Farmer DB, Chiu HY, Lin YM et al (2009) Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett 9:4474–4478CrossRef Farmer DB, Chiu HY, Lin YM et al (2009) Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett 9:4474–4478CrossRef
49.
go back to reference Blake P, Brimicombe PD, Nair RR et al (2010) Doped graphene electrodes for organic solar cells. Nanotechnology 21:505204CrossRef Blake P, Brimicombe PD, Nair RR et al (2010) Doped graphene electrodes for organic solar cells. Nanotechnology 21:505204CrossRef
50.
go back to reference Li X, Zhu Y, Cai W et al (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9:4359–4363CrossRef Li X, Zhu Y, Cai W et al (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9:4359–4363CrossRef
51.
go back to reference Bae S, Kim H, Lee Y et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotech 5:574–578CrossRef Bae S, Kim H, Lee Y et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotech 5:574–578CrossRef
52.
go back to reference Wu J, Becerril Bao Z et al (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302CrossRef Wu J, Becerril Bao Z et al (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302CrossRef
53.
go back to reference Merchant CA, Healy K, Wanunu M et al (2010) DNA translocation through graphene nanopores. Nano Lett 10:2915–2921CrossRef Merchant CA, Healy K, Wanunu M et al (2010) DNA translocation through graphene nanopores. Nano Lett 10:2915–2921CrossRef
54.
go back to reference Avdoshenko SM, Nozaki D, da Rocha CG et al (2013) Dynamics and electronic transport properties of DNA translocation through graphene nanopores. Nano Lett 13:1969–1976CrossRef Avdoshenko SM, Nozaki D, da Rocha CG et al (2013) Dynamics and electronic transport properties of DNA translocation through graphene nanopores. Nano Lett 13:1969–1976CrossRef
55.
go back to reference Sathe C, Zou X, Leburton JP et al (2011) Computational investigation of DNA detection using graphene nanopores. ACS Nano 5:8842–8851CrossRef Sathe C, Zou X, Leburton JP et al (2011) Computational investigation of DNA detection using graphene nanopores. ACS Nano 5:8842–8851CrossRef
56.
go back to reference Chen ZP, Ren W, Gao L et al (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428CrossRef Chen ZP, Ren W, Gao L et al (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428CrossRef
57.
go back to reference Wang DW, Li F, Zhao J et al (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745–1752CrossRef Wang DW, Li F, Zhao J et al (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745–1752CrossRef
58.
go back to reference Palacios T, Hsu A, Wang H (2010) Applications of graphene devices in RF communications. IEEE Commun Mag 48:122–128CrossRef Palacios T, Hsu A, Wang H (2010) Applications of graphene devices in RF communications. IEEE Commun Mag 48:122–128CrossRef
59.
go back to reference Abadal S, Alarcón E, Lemme M et al (2013) Graphene-enabled wireless communication for massive multicore architectures. IEEE Commun Mag 51:137–143CrossRef Abadal S, Alarcón E, Lemme M et al (2013) Graphene-enabled wireless communication for massive multicore architectures. IEEE Commun Mag 51:137–143CrossRef
60.
go back to reference Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803CrossRef Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803CrossRef
61.
go back to reference Tanugi DC, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608CrossRef Tanugi DC, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608CrossRef
62.
go back to reference Sint K, Wang B, Král P (2008) Selective ion passage through functionalized graphene nanopores. J Am Chem Soc 130:16448–16449CrossRef Sint K, Wang B, Král P (2008) Selective ion passage through functionalized graphene nanopores. J Am Chem Soc 130:16448–16449CrossRef
63.
go back to reference Zou R, Zhang Z, Xu K (2012) A method for joining individual graphene sheets. Carbon 50:4965–4972CrossRef Zou R, Zhang Z, Xu K (2012) A method for joining individual graphene sheets. Carbon 50:4965–4972CrossRef
64.
go back to reference Ye X, Huang T, Lin Z et al (2013) Lap joining of graphene flakes by current-assisted CO2 laser irradiation. Carbon 61:329–335CrossRef Ye X, Huang T, Lin Z et al (2013) Lap joining of graphene flakes by current-assisted CO2 laser irradiation. Carbon 61:329–335CrossRef
65.
go back to reference Kim BH, Kim JY, Jeong SJ et al (2010) Surface energy modification by spin-cast, large-area graphene film for block copolymer lithography. ACS Nano 4:5464–5470CrossRef Kim BH, Kim JY, Jeong SJ et al (2010) Surface energy modification by spin-cast, large-area graphene film for block copolymer lithography. ACS Nano 4:5464–5470CrossRef
66.
go back to reference Bai JW, Cheng R, Xiu F et al (2010) Very large magnetoresistance in graphene nanoribbons. Nat Nanotechnol 5:655–659CrossRef Bai JW, Cheng R, Xiu F et al (2010) Very large magnetoresistance in graphene nanoribbons. Nat Nanotechnol 5:655–659CrossRef
67.
go back to reference Sinitskii A, Tour JM (2010) Patterning graphene through the self-assembled templates: toward periodic two-dimensional graphene nanostructures with semiconductor properties. J Am Chem Soc 132:14730–14732CrossRef Sinitskii A, Tour JM (2010) Patterning graphene through the self-assembled templates: toward periodic two-dimensional graphene nanostructures with semiconductor properties. J Am Chem Soc 132:14730–14732CrossRef
68.
go back to reference Liang XG, Jung YS, Wu S et al (2010) Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett 10:2454–2460CrossRef Liang XG, Jung YS, Wu S et al (2010) Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett 10:2454–2460CrossRef
69.
go back to reference Ning GQ, Fan Z, Wang G et al (2011) Gram-scale synthesis of nanomesh grahene with high surface area and its applications in supercapacitor electrodes. Chem Commun 47:5976–5978CrossRef Ning GQ, Fan Z, Wang G et al (2011) Gram-scale synthesis of nanomesh grahene with high surface area and its applications in supercapacitor electrodes. Chem Commun 47:5976–5978CrossRef
70.
go back to reference Wang M, Fu L, Gan L et al (2013) CVD growth of large area smooth-edged graphene nanomesh by nanosphere lithography. Sci Rep 3:1238CrossRef Wang M, Fu L, Gan L et al (2013) CVD growth of large area smooth-edged graphene nanomesh by nanosphere lithography. Sci Rep 3:1238CrossRef
71.
go back to reference Safron N, Kim M, Gopalan P et al (2012) Barrier-guided growth of micro- and nano-structured graphene. Adv Mater 24:1041–1045CrossRef Safron N, Kim M, Gopalan P et al (2012) Barrier-guided growth of micro- and nano-structured graphene. Adv Mater 24:1041–1045CrossRef
72.
go back to reference Yuan WJ, Chen J, Shi G (2014) Nanoporous graphene materials. Mater Today 17:77–85CrossRef Yuan WJ, Chen J, Shi G (2014) Nanoporous graphene materials. Mater Today 17:77–85CrossRef
73.
go back to reference Wei D, Liu Y, Wang Y et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758CrossRef Wei D, Liu Y, Wang Y et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758CrossRef
74.
go back to reference Sheng ZH, Tao L, Chen JJ et al (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358CrossRef Sheng ZH, Tao L, Chen JJ et al (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358CrossRef
75.
go back to reference Suezawa MS, Sumino KJ, Harada HF et al (1986) Nitrogen oxygen complexes as shallow donors in silicon crystals. J Appl Phys 25:859–861CrossRef Suezawa MS, Sumino KJ, Harada HF et al (1986) Nitrogen oxygen complexes as shallow donors in silicon crystals. J Appl Phys 25:859–861CrossRef
76.
go back to reference Deng DH, Pan X, Yu L et al (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23:1188–1193CrossRef Deng DH, Pan X, Yu L et al (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23:1188–1193CrossRef
77.
go back to reference Iwazaki T, Obinata R, Sugimoto W (2009) High oxygen-reduction activity of silk-derived activated carbon. Electrochem Commun 11:376–378CrossRef Iwazaki T, Obinata R, Sugimoto W (2009) High oxygen-reduction activity of silk-derived activated carbon. Electrochem Commun 11:376–378CrossRef
78.
go back to reference Terrones M, Banhart F, Grobert N et al (2002) Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett 89:075505CrossRef Terrones M, Banhart F, Grobert N et al (2002) Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett 89:075505CrossRef
79.
go back to reference Krasheninnkov AV, Nordlund K, Keinonen J (2002) Ion-irradiation-induced welding of carbon nanotubes. Phys Rev B 66:245403CrossRef Krasheninnkov AV, Nordlund K, Keinonen J (2002) Ion-irradiation-induced welding of carbon nanotubes. Phys Rev B 66:245403CrossRef
80.
go back to reference Jang I, Sinnott SB (2004) Molecular dynamics simulation study of carbon nanotube welding under electron beam irradiation. Nano Lett 4:109–114CrossRef Jang I, Sinnott SB (2004) Molecular dynamics simulation study of carbon nanotube welding under electron beam irradiation. Nano Lett 4:109–114CrossRef
81.
go back to reference Bangert U, Pierce W, Kepaptsoglou DM et al (2013) Ion implantation of graphene-toward IC compatible technology. Nano Lett 13:4902–4907CrossRef Bangert U, Pierce W, Kepaptsoglou DM et al (2013) Ion implantation of graphene-toward IC compatible technology. Nano Lett 13:4902–4907CrossRef
82.
go back to reference Xu Y, Zhang K, Brüsewitz C et al (2013) Investigate of the effect of low energy ion beam irradiation on mono-layer graphene. AIP Adv 3:072120CrossRef Xu Y, Zhang K, Brüsewitz C et al (2013) Investigate of the effect of low energy ion beam irradiation on mono-layer graphene. AIP Adv 3:072120CrossRef
83.
go back to reference Xu T, Xie X, Sun L (2013) Fabrication of nanopores using electron beam. Paper presented at NEMS2013, Suzhou, China, 7–10 Apr 2013 Xu T, Xie X, Sun L (2013) Fabrication of nanopores using electron beam. Paper presented at NEMS2013, Suzhou, China, 7–10 Apr 2013
84.
go back to reference He K, Robertson AW, Gong C et al (2015) Controlled formation of closed-edge nanopores in graphene. Nanoscale 7:11602CrossRef He K, Robertson AW, Gong C et al (2015) Controlled formation of closed-edge nanopores in graphene. Nanoscale 7:11602CrossRef
85.
go back to reference Lu N, Wang J, Floresca HC et al (2012) In situ studies on the shrinkage and expansion of graphene nanopores under electron beam irradiation at temperatures in the range of 400–1200 °C. Carbon 50:2961–2965CrossRef Lu N, Wang J, Floresca HC et al (2012) In situ studies on the shrinkage and expansion of graphene nanopores under electron beam irradiation at temperatures in the range of 400–1200 °C. Carbon 50:2961–2965CrossRef
86.
go back to reference Siwy ZS, Davenport M (2010) Nanopores: GRAPHENE opens up to DNA. Nat Nanotech 5:697–698CrossRef Siwy ZS, Davenport M (2010) Nanopores: GRAPHENE opens up to DNA. Nat Nanotech 5:697–698CrossRef
87.
go back to reference Bai J, Zhong X, Jiang S et al (2010) Graphene nanomesh. Nat Nanotechnol 5:190–194CrossRef Bai J, Zhong X, Jiang S et al (2010) Graphene nanomesh. Nat Nanotechnol 5:190–194CrossRef
Metadata
Title
Introduction
Author
Xin Wu
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6457-9_1