Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Introduction

Authors : Fei Wang, Zhenping Weng, Lin He

Published in: Comprehensive Investigation on Active-Passive Hybrid Isolation and Tunable Dynamic Vibration Absorption

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter mainly introduces the necessity of the research and the status of active vibration and noise control, the research status of vibration and noise control of pipeline, as well as the research status of vibration absorption and vibration isolation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rayleigh L (1878) The theory of sound, vol. II, chapter XIV, § 282. In: Two sources of like pitch; points of silence; experimental methods, 1st edn. MacMillan & Co, London, pp 104–106; 2nd ed. (1894/96) and Reprints in Dover, New York, pp 116–118 Rayleigh L (1878) The theory of sound, vol. II, chapter XIV, § 282. In: Two sources of like pitch; points of silence; experimental methods, 1st edn. MacMillan & Co, London, pp 104–106; 2nd ed. (1894/96) and Reprints in Dover, New York, pp 116–118
2.
go back to reference Coanda H. Procédé protection contre les bruits. French patent FR 722.274, filed: 21 Oct 1930, patented: 29 Dec 1931 Coanda H. Procédé protection contre les bruits. French patent FR 722.274, filed: 21 Oct 1930, patented: 29 Dec 1931
3.
go back to reference Coanda H. Procédé et dispositif de protection contre les bruits. French patent FR 762.121, filed: 31 Dec 1932, patented: 18 Jan 1934 Coanda H. Procédé et dispositif de protection contre les bruits. French patent FR 762.121, filed: 31 Dec 1932, patented: 18 Jan 1934
4.
go back to reference Lueg P. Verfahren zur Dämpfung von Schallschwingungen. German patent no. 655 508, filed: 27 Jan 1993, patented: 30 Dec 1937 Lueg P. Verfahren zur Dämpfung von Schallschwingungen. German patent no. 655 508, filed: 27 Jan 1993, patented: 30 Dec 1937
5.
go back to reference Lueg P. Process of silencing sound oscillations. U.S. patent US 2,043,416, filed: 8 Mar 1934, patented: 9 Jun 1936 Lueg P. Process of silencing sound oscillations. U.S. patent US 2,043,416, filed: 8 Mar 1934, patented: 9 Jun 1936
6.
go back to reference Olson HF. Electronic sound absorber. U.S. patent US 2,983,790, filed: 30 Apr 1953, patented: 9 May 1961 Olson HF. Electronic sound absorber. U.S. patent US 2,983,790, filed: 30 Apr 1953, patented: 9 May 1961
7.
go back to reference Olson HF (1956) Electronic control of noise, vibration, and reverberation. J Acoust Soc Am 28:966–972CrossRef Olson HF (1956) Electronic control of noise, vibration, and reverberation. J Acoust Soc Am 28:966–972CrossRef
8.
go back to reference Singh A, Bharadwaj S, Narayan S (2016) Analysis of various NHV sources of a combustion engine. Tehnički glasnik 10(1–2):29–37 Singh A, Bharadwaj S, Narayan S (2016) Analysis of various NHV sources of a combustion engine. Tehnički glasnik 10(1–2):29–37
9.
go back to reference Zhang H (2005) Active dynamic vibration absorber. Harbin Engineering University Zhang H (2005) Active dynamic vibration absorber. Harbin Engineering University
10.
go back to reference Olsson C (2002) Active engine vibration isolation using feedback control. Division of Automatic Control, Department of Electrical Engineering, Linköpings universitet, Linköping Olsson C (2002) Active engine vibration isolation using feedback control. Division of Automatic Control, Department of Electrical Engineering, Linköpings universitet, Linköping
11.
go back to reference Toshio Y, Itaru T (2005) Active suspension control of a one-wheel car model using single input rule modules fuzzy reasoning and a disturbance observer. J Zhejiang Univ Sci A 6(4):251–256 Toshio Y, Itaru T (2005) Active suspension control of a one-wheel car model using single input rule modules fuzzy reasoning and a disturbance observer. J Zhejiang Univ Sci A 6(4):251–256
12.
go back to reference Park H, Lee BH, Lee CW (2007) Design of an active control engine mount using a direct drive electrodynamic actuator. In: Proceeding of the ASME 2007 international design engineering technical conference & computers and information in engineering conference IDETC/CIE, pp 103–108 Park H, Lee BH, Lee CW (2007) Design of an active control engine mount using a direct drive electrodynamic actuator. In: Proceeding of the ASME 2007 international design engineering technical conference & computers and information in engineering conference IDETC/CIE, pp 103–108
13.
go back to reference Gabbert U, Ringwelski S (2014) Active vibration and noise control of a car engine: modeling and experimental validation. In: Mechanics and model-based control of advanced engineering systems. Springer, Vienna, pp 123–135 Gabbert U, Ringwelski S (2014) Active vibration and noise control of a car engine: modeling and experimental validation. In: Mechanics and model-based control of advanced engineering systems. Springer, Vienna, pp 123–135
14.
go back to reference Stanef DA, Hansen CH, Morgans RC (2004) Active control analysis of mining vehicle cabin noise using finite element modelling. J Sound Vib 277(1):277–297CrossRef Stanef DA, Hansen CH, Morgans RC (2004) Active control analysis of mining vehicle cabin noise using finite element modelling. J Sound Vib 277(1):277–297CrossRef
15.
go back to reference Gulyas K, Pinte G, Augusztinovicz F et al (2002) Active noise control in agricultural machines. Proc Int Conf Noise Vib Eng (ISMA) 1:11–22 Gulyas K, Pinte G, Augusztinovicz F et al (2002) Active noise control in agricultural machines. Proc Int Conf Noise Vib Eng (ISMA) 1:11–22
16.
go back to reference Geng XH (2009) Optimal vibration control for vehicle active suspension system. Ocean University of China Geng XH (2009) Optimal vibration control for vehicle active suspension system. Ocean University of China
17.
go back to reference Guo NC, Shi WK, Liu WJ et al (2012) Application of dynamic vibration absorber in vibration control of rear axle. J Jilin Univ (Eng Technol Ed) 42(6):1349–1354 Guo NC, Shi WK, Liu WJ et al (2012) Application of dynamic vibration absorber in vibration control of rear axle. J Jilin Univ (Eng Technol Ed) 42(6):1349–1354
18.
go back to reference Bohn C, Cortabarria A, Härtel V et al (2004) Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling. Control Eng Pract 12(8):1029–1039CrossRef Bohn C, Cortabarria A, Härtel V et al (2004) Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling. Control Eng Pract 12(8):1029–1039CrossRef
19.
go back to reference Ning D, Sun S, Li H et al (2016) Active control of an innovative seat suspension system with acceleration measurement based friction estimation. J Sound Vib 384:28–44CrossRef Ning D, Sun S, Li H et al (2016) Active control of an innovative seat suspension system with acceleration measurement based friction estimation. J Sound Vib 384:28–44CrossRef
20.
go back to reference Gan Z, Hillis AJ, Darling J (2015) Adaptive control of an active seat for occupant vibration reduction. J Sound Vib 349:39–55CrossRef Gan Z, Hillis AJ, Darling J (2015) Adaptive control of an active seat for occupant vibration reduction. J Sound Vib 349:39–55CrossRef
21.
go back to reference Maciejewski I, Krzyżyński T (2011) Control design of semi-active seat suspension systems. J Theor Appl Mech 49(4):1151–1168 Maciejewski I, Krzyżyński T (2011) Control design of semi-active seat suspension systems. J Theor Appl Mech 49(4):1151–1168
22.
go back to reference Bianchini E (2005) Active vibration control of automotive steering wheels. SAE technical paper Bianchini E (2005) Active vibration control of automotive steering wheels. SAE technical paper
23.
go back to reference Miller M, Narkiewicz J, Kania W et al (2006) The application of helicopter rotor blade active control systems for noise and vibration reduction and performance improvement. Pr Inst Lot 1–2(184–185):164–180 Miller M, Narkiewicz J, Kania W et al (2006) The application of helicopter rotor blade active control systems for noise and vibration reduction and performance improvement. Pr Inst Lot 1–2(184–185):164–180
24.
go back to reference Zhao CF, Gu ZQ (2009) Time-domain simulation of active control of structural response for helicopter in frequency domain. J Syst Simul 21(20):6347–6351 Zhao CF, Gu ZQ (2009) Time-domain simulation of active control of structural response for helicopter in frequency domain. J Syst Simul 21(20):6347–6351
25.
go back to reference Lu Y, Gu ZQ (2007) Helicopter structure response active control actuator optimization design. J Vib Shock 26(3):23–26 Lu Y, Gu ZQ (2007) Helicopter structure response active control actuator optimization design. J Vib Shock 26(3):23–26
26.
go back to reference Sutton TJ, Elliott SJ, Brennan MJ et al (1997) Active isolation of multiple structural waves on a helicopter gearbox support strut. J Sound Vib 205(1):81–101CrossRef Sutton TJ, Elliott SJ, Brennan MJ et al (1997) Active isolation of multiple structural waves on a helicopter gearbox support strut. J Sound Vib 205(1):81–101CrossRef
27.
go back to reference Roth D, Enenkl B, Dieterich O (2006) Active rotor control by flaps for vibration reduction-full scale demonstrator and first flight test results Roth D, Enenkl B, Dieterich O (2006) Active rotor control by flaps for vibration reduction-full scale demonstrator and first flight test results
28.
go back to reference Konstanzer P, Grunewald M, Janker P et al (2006) Aircraft interior noise reduction through a piezo tunable vibration absorber system. In: Proceedings of the 25th international congress of the aeronautical sciences (ICAS 2006), pp 1–6 Konstanzer P, Grunewald M, Janker P et al (2006) Aircraft interior noise reduction through a piezo tunable vibration absorber system. In: Proceedings of the 25th international congress of the aeronautical sciences (ICAS 2006), pp 1–6
29.
go back to reference Shenggang Y, Dakai T, Xiaonei Z et al (2014) Design of active noise control system applied to helicopter cabins. Inter-Noise Noise-Con Congr Conf Proc Inst Noise Control Eng 249(6):1796–1799 Shenggang Y, Dakai T, Xiaonei Z et al (2014) Design of active noise control system applied to helicopter cabins. Inter-Noise Noise-Con Congr Conf Proc Inst Noise Control Eng 249(6):1796–1799
30.
go back to reference Thomas DR, Nelson PA, Elliott SJ (1993) Active control of the transmission of sound through a thin cylindrical shell, part I: the minimization of vibrational energy. J Sound Vib 167(1):91–111MATHCrossRef Thomas DR, Nelson PA, Elliott SJ (1993) Active control of the transmission of sound through a thin cylindrical shell, part I: the minimization of vibrational energy. J Sound Vib 167(1):91–111MATHCrossRef
31.
go back to reference Sun YF, Chen RW, Xu ZW et al (2003) The active vibration and noise control for fighter cockit model using piezoelectric material. J Astronaut 24(1):43–48 Sun YF, Chen RW, Xu ZW et al (2003) The active vibration and noise control for fighter cockit model using piezoelectric material. J Astronaut 24(1):43–48
32.
go back to reference Wang HL, Li KX, Chen CL et al (2013) Experimentally investigating active vibration control of panel structure of airplane. Mech Sci Technol Aerosp Eng 32(10):1532–1536 Wang HL, Li KX, Chen CL et al (2013) Experimentally investigating active vibration control of panel structure of airplane. Mech Sci Technol Aerosp Eng 32(10):1532–1536
33.
go back to reference Chen RW, Sun YF, Xiong K et al (2003) Structural noise suppression of aircraft cabin using elastic wave control concept. J Nanjing Univ Aeronaut Astronaut 35(5):489–493 Chen RW, Sun YF, Xiong K et al (2003) Structural noise suppression of aircraft cabin using elastic wave control concept. J Nanjing Univ Aeronaut Astronaut 35(5):489–493
34.
go back to reference Zimcik DG (2004) Active control of aircraft cabin noise. National Research Council of Canada Ottawa (Ontario), Institute for Aerospace Research Zimcik DG (2004) Active control of aircraft cabin noise. National Research Council of Canada Ottawa (Ontario), Institute for Aerospace Research
35.
go back to reference Gerner C, Sachau D, Breitbach H (2004) Active noise control in an aircraft cabin. In: Proceedings of IMAC-XXII, conference on structural dynamics, pp 20040126–20040129 Gerner C, Sachau D, Breitbach H (2004) Active noise control in an aircraft cabin. In: Proceedings of IMAC-XXII, conference on structural dynamics, pp 20040126–20040129
36.
go back to reference Griffin S, Weston A, Anderson J (2013) Adaptive noise cancellation system for low frequency transmission of sound in open fan aircraft. Shock Vib 20(5):989–1000CrossRef Griffin S, Weston A, Anderson J (2013) Adaptive noise cancellation system for low frequency transmission of sound in open fan aircraft. Shock Vib 20(5):989–1000CrossRef
37.
go back to reference Karadal FM, Nalbantoğlu V, Şahin M et al (2008) Active flutter control of a smart fin. In: 19th international conference on adaptive structures and technologies, Switzerland Karadal FM, Nalbantoğlu V, Şahin M et al (2008) Active flutter control of a smart fin. In: 19th international conference on adaptive structures and technologies, Switzerland
38.
go back to reference Shevtsov S, Tsahalis D, Flek M et al (2010) Comparison of active and passive modes of piezoelectric patch actuators for scaled helicopter rotor blade vibration suppression. In: Proceedings of international conference on noise and vibration engineering ISMA 2010, Leuven, Belgium, pp 441–456 Shevtsov S, Tsahalis D, Flek M et al (2010) Comparison of active and passive modes of piezoelectric patch actuators for scaled helicopter rotor blade vibration suppression. In: Proceedings of international conference on noise and vibration engineering ISMA 2010, Leuven, Belgium, pp 441–456
39.
go back to reference Fischer R, Boroditsky L, Dempsey R et al (2006) Airborne noise flanking of shipboard vibration isolation systems. Sound Vib 40(12):19–22 Fischer R, Boroditsky L, Dempsey R et al (2006) Airborne noise flanking of shipboard vibration isolation systems. Sound Vib 40(12):19–22
40.
go back to reference Swinbanks MA, Daley S (1993) Advanced submarine technology-project M control theory report. Phase 1. GEC-Marconi Research Centre, Chelmsford (United Kingdom)CrossRef Swinbanks MA, Daley S (1993) Advanced submarine technology-project M control theory report. Phase 1. GEC-Marconi Research Centre, Chelmsford (United Kingdom)CrossRef
41.
go back to reference Maillard JP, Fuller CR (1999) Active control of sound radiation from cylinders with piezoelectric actuators and structural acoustic sensing. J Sound Vib 222(3):363–387CrossRef Maillard JP, Fuller CR (1999) Active control of sound radiation from cylinders with piezoelectric actuators and structural acoustic sensing. J Sound Vib 222(3):363–387CrossRef
42.
go back to reference Laplante W, Chen T, Baz A et al (2002) Active control of vibration and noise radiation from fluid-loaded cylinder using active constrained layer damping. Mod Anal 8(6):877–902MATH Laplante W, Chen T, Baz A et al (2002) Active control of vibration and noise radiation from fluid-loaded cylinder using active constrained layer damping. Mod Anal 8(6):877–902MATH
43.
go back to reference Ruzzene M, Baz A (2000) Active/passive control of sound radiation and power flow in fluid-loaded shells. Thin-Walled Struct 38(1):17–42CrossRef Ruzzene M, Baz A (2000) Active/passive control of sound radiation and power flow in fluid-loaded shells. Thin-Walled Struct 38(1):17–42CrossRef
44.
go back to reference Anand RB, Arun KS, Baskaran K et al (2016) Acoustics reduction in marine vessel using active noise cancellation system. C Int J Eng Adv Res Technol (IJEART) 2(3):22–25 Anand RB, Arun KS, Baskaran K et al (2016) Acoustics reduction in marine vessel using active noise cancellation system. C Int J Eng Adv Res Technol (IJEART) 2(3):22–25
45.
go back to reference Annaswamy AM (2006) Active control of blade tonals in underwater vehicles. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge Annaswamy AM (2006) Active control of blade tonals in underwater vehicles. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge
46.
go back to reference Pan X, Tso Y, Juniper R (2008) Active control of low-frequency hull-radiated noise. J Sound Vib 313(1):29–45CrossRef Pan X, Tso Y, Juniper R (2008) Active control of low-frequency hull-radiated noise. J Sound Vib 313(1):29–45CrossRef
47.
go back to reference Pan X, Tso Y, Juniper R (2008) Active control of radiated pressure of a submarine hull. J Sound Vib 311(1):224–242CrossRef Pan X, Tso Y, Juniper R (2008) Active control of radiated pressure of a submarine hull. J Sound Vib 311(1):224–242CrossRef
48.
go back to reference Pan X, Tso Y, Juniper R (2005) Active modal control of hull radiated noise. In: Proceedings of acoustics 2005, pp 9–11 Pan X, Tso Y, Juniper R (2005) Active modal control of hull radiated noise. In: Proceedings of acoustics 2005, pp 9–11
49.
go back to reference Pan X, Hansen CH (1997) Active control of vibration transmission in a cylindrical shell. J Sound Vib 203(3):409–434CrossRef Pan X, Hansen CH (1997) Active control of vibration transmission in a cylindrical shell. J Sound Vib 203(3):409–434CrossRef
50.
go back to reference Cao Y, Sun H, An F et al (2012) Active control of low-frequency sound radiation by cylindrical shell with piezoelectric stack force actuators. J Sound Vib 331(11):2471–2484CrossRef Cao Y, Sun H, An F et al (2012) Active control of low-frequency sound radiation by cylindrical shell with piezoelectric stack force actuators. J Sound Vib 331(11):2471–2484CrossRef
51.
go back to reference Caresta M, Kessissoglou N (2012) Active control of sound radiated by a submarine hull in axisymmetric vibration using inertial actuators. J Vib Acoust 134(1):011002CrossRef Caresta M, Kessissoglou N (2012) Active control of sound radiated by a submarine hull in axisymmetric vibration using inertial actuators. J Vib Acoust 134(1):011002CrossRef
52.
go back to reference Caresta M, Kessissoglou NJ (2010) Active suppression of acoustic radiation from a submarine hull using inertial actuators. In: The 20th international congress on acoustics Caresta M, Kessissoglou NJ (2010) Active suppression of acoustic radiation from a submarine hull using inertial actuators. In: The 20th international congress on acoustics
53.
go back to reference Caresta M (2011) Active control of sound radiated by a submarine in bending vibration. J Sound Vib 330(4):615–624CrossRef Caresta M (2011) Active control of sound radiated by a submarine in bending vibration. J Sound Vib 330(4):615–624CrossRef
54.
go back to reference Xu M (2005) Adaptive-passive and active control of vibration and wave propagation in cylindrical shells using smart materials. University of Akron Xu M (2005) Adaptive-passive and active control of vibration and wave propagation in cylindrical shells using smart materials. University of Akron
55.
go back to reference Darsivan FJ, Martono W (2006) Engine mounting characteristic for vibration isolation and active vibration control strategies Darsivan FJ, Martono W (2006) Engine mounting characteristic for vibration isolation and active vibration control strategies
56.
go back to reference Zhu MG, Yang TJ, Shuai ZJ et al (2011) Investigation of active vibration isolation based on an adaptive comb-shaped filtered algorithm. J Harbin Eng Univ 32(12):1576–1581 Zhu MG, Yang TJ, Shuai ZJ et al (2011) Investigation of active vibration isolation based on an adaptive comb-shaped filtered algorithm. J Harbin Eng Univ 32(12):1576–1581
57.
go back to reference Olsson C (2005) Disturbance observer-based automotive engine vibration isolation dealing with non-linear dynamics and transient excitation. Department of Information Technology, Uppsala University Olsson C (2005) Disturbance observer-based automotive engine vibration isolation dealing with non-linear dynamics and transient excitation. Department of Information Technology, Uppsala University
58.
go back to reference Johnson A, Daley S (2011) A smart spring mounting system for marine applications. In: 11th ICSV Johnson A, Daley S (2011) A smart spring mounting system for marine applications. In: 11th ICSV
59.
go back to reference Daley S, Johnson FA, Pearson JB et al (2004) Active vibration control for marine applications. Control Eng Pract 12(4):465–474CrossRef Daley S, Johnson FA, Pearson JB et al (2004) Active vibration control for marine applications. Control Eng Pract 12(4):465–474CrossRef
60.
go back to reference Daley S, Hätönen J, Owens DH (2006) Active vibration isolation in a “smart spring” mount using a repetitive control approach. Control Eng Pract 14(9):991–997CrossRef Daley S, Hätönen J, Owens DH (2006) Active vibration isolation in a “smart spring” mount using a repetitive control approach. Control Eng Pract 14(9):991–997CrossRef
61.
go back to reference Li X, Howard CQ, Hansen CH et al (2004) Feasibility of active vibration isolation of diesel engines in Collins class warships. J High Energy Phys Li X, Howard CQ, Hansen CH et al (2004) Feasibility of active vibration isolation of diesel engines in Collins class warships. J High Energy Phys
62.
go back to reference Yang T et al (2014) On synchrophasing control of vibration for a floating raft vibration isolation system. In: Inter.Noise 2014 Yang T et al (2014) On synchrophasing control of vibration for a floating raft vibration isolation system. In: Inter.Noise 2014
63.
go back to reference Yang TJ, Qi GY, Li WY et al (2006) Study on active control techniques for warship power plant. Ship Sci Technol 28(z2):46–53 Yang TJ, Qi GY, Li WY et al (2006) Study on active control techniques for warship power plant. Ship Sci Technol 28(z2):46–53
64.
go back to reference Zhao YL, He L, Huang YY et al (2005) The computation of shock response of marine floating raft shock-resistant system in the time domain. Noise Vib Control 25(2):14–17 Zhao YL, He L, Huang YY et al (2005) The computation of shock response of marine floating raft shock-resistant system in the time domain. Noise Vib Control 25(2):14–17
65.
go back to reference Niu JC, Song KJ (2004) Active control strategies of a floating raft isolation system for marine diesel engines. Trans CSICE 22(3):252–256 Niu JC, Song KJ (2004) Active control strategies of a floating raft isolation system for marine diesel engines. Trans CSICE 22(3):252–256
66.
go back to reference Fang YY, Wang GZ (2006) Design of vibration isolation for ship’s auxiliary machinery and analysis of coupling vibration with ship structure. J Jiangsu Univ Sci Technol (Nat Sci Ed) 20(3):16–20 Fang YY, Wang GZ (2006) Design of vibration isolation for ship’s auxiliary machinery and analysis of coupling vibration with ship structure. J Jiangsu Univ Sci Technol (Nat Sci Ed) 20(3):16–20
67.
go back to reference Zhang YS, Tong ZP, Zhou Y et al (2013) Research of hard elastic isolation technology of marine gearboxes. Noise Vib Control 3:153–155 Zhang YS, Tong ZP, Zhou Y et al (2013) Research of hard elastic isolation technology of marine gearboxes. Noise Vib Control 3:153–155
68.
go back to reference Guan YH, Shepard WS Jr, Lim TC et al (2004) Experimental analysis of an active vibration control system for gearboxes. Smart Mater Struct 13(5):1230CrossRef Guan YH, Shepard WS Jr, Lim TC et al (2004) Experimental analysis of an active vibration control system for gearboxes. Smart Mater Struct 13(5):1230CrossRef
69.
go back to reference Leung RCN (1997) Active control of machinery noise in a marine environment-lessons learned5. In: Fifth international congress on sound and vibration Leung RCN (1997) Active control of machinery noise in a marine environment-lessons learned5. In: Fifth international congress on sound and vibration
70.
go back to reference Fuller CR, Elliott SJ, Nelson PA (1996) Active control of vibration. Elsevier Ltd Fuller CR, Elliott SJ, Nelson PA (1996) Active control of vibration. Elsevier Ltd
71.
go back to reference Bies DA, Hansen CH (2009) Engineering noise control: theory and practice, 4th edn. CRC Press Bies DA, Hansen CH (2009) Engineering noise control: theory and practice, 4th edn. CRC Press
72.
go back to reference Hansen C et al (2012) Active control of noise and vibration, 2nd edn. CRC Press Hansen C et al (2012) Active control of noise and vibration, 2nd edn. CRC Press
73.
go back to reference Elliott SJ (2001) Signal processing for active control. Elsevier Ltd Elliott SJ (2001) Signal processing for active control. Elsevier Ltd
74.
go back to reference Phohomsiri P et al (2006) Time-delayed positive velocity feedback control design for active control of structures. J Eng Mech 132(6):690–703CrossRef Phohomsiri P et al (2006) Time-delayed positive velocity feedback control design for active control of structures. J Eng Mech 132(6):690–703CrossRef
75.
go back to reference Rohlfing J et al (2010) Compensation filter for feedback control units with proof-mass electrodynamic actuators. In: Proceedings of ISMA 2010 including USD, pp 425–439 Rohlfing J et al (2010) Compensation filter for feedback control units with proof-mass electrodynamic actuators. In: Proceedings of ISMA 2010 including USD, pp 425–439
76.
go back to reference Guo T et al (2012) An improved force feedback control algorithm for active tendons. Sensors 12:11360–11371CrossRef Guo T et al (2012) An improved force feedback control algorithm for active tendons. Sensors 12:11360–11371CrossRef
77.
go back to reference Gao X, Chen Q (2013) Active vibration control for a bilinear system with nonlinear velocity time-delayed feedback. In: Proceedings of the world congress on engineering 2013, vol III Gao X, Chen Q (2013) Active vibration control for a bilinear system with nonlinear velocity time-delayed feedback. In: Proceedings of the world congress on engineering 2013, vol III
78.
go back to reference Martino OAA (2011) Hybrid time-frequency domain adaptive filtering algorithm for electrodynamic shaker control. J Eng Comput Innov 2(10):191–205 Martino OAA (2011) Hybrid time-frequency domain adaptive filtering algorithm for electrodynamic shaker control. J Eng Comput Innov 2(10):191–205
79.
go back to reference Perini EA et al (2009) Active control in rotating machinery using magnetic actuators with linear matrix inequalities (LMI) approach. In: Proceedings of the IMAC-XXVII Perini EA et al (2009) Active control in rotating machinery using magnetic actuators with linear matrix inequalities (LMI) approach. In: Proceedings of the IMAC-XXVII
80.
go back to reference Jun L (2010) Positive position feedback control for high-amplitude vibration of a flexible beam to a principal resonance excitation. Shock Vib 17(2):187–203CrossRef Jun L (2010) Positive position feedback control for high-amplitude vibration of a flexible beam to a principal resonance excitation. Shock Vib 17(2):187–203CrossRef
81.
go back to reference Marx LRK et al (2009) Embedded output feedback controllers for piezoelectric actuated structures. World J Mod Simul 5(2):113–119 Marx LRK et al (2009) Embedded output feedback controllers for piezoelectric actuated structures. World J Mod Simul 5(2):113–119
82.
go back to reference Kim T et al (2016) Active vibration control of axial piston machine using higher harmonic least mean square control of swash plate. In: 10th international fluid power conference Kim T et al (2016) Active vibration control of axial piston machine using higher harmonic least mean square control of swash plate. In: 10th international fluid power conference
83.
go back to reference Mazur K, Pawełczyk M (2016) Internal model control for a light-weight active noise-reducing casing. Arch Acoust 41(2):315–322CrossRef Mazur K, Pawełczyk M (2016) Internal model control for a light-weight active noise-reducing casing. Arch Acoust 41(2):315–322CrossRef
84.
go back to reference Yousefi A (1998) Active vibration control of smart structures using piezoelements. In: CanSmart workshop Yousefi A (1998) Active vibration control of smart structures using piezoelements. In: CanSmart workshop
85.
go back to reference Zhang K, Scorletti G, Ichchou MN et al (2013) Robust active vibration control of piezoelectric flexible structures using deterministic and probabilistic analysis. J Intell Mater Syst Struct 25(6):665–679CrossRef Zhang K, Scorletti G, Ichchou MN et al (2013) Robust active vibration control of piezoelectric flexible structures using deterministic and probabilistic analysis. J Intell Mater Syst Struct 25(6):665–679CrossRef
86.
go back to reference Jovanović MM, Simonović AM, Zorić ND et al (2014) Experimental investigation of spillover effect in system of active vibration control. FME Trans 42(4):329–334CrossRef Jovanović MM, Simonović AM, Zorić ND et al (2014) Experimental investigation of spillover effect in system of active vibration control. FME Trans 42(4):329–334CrossRef
87.
go back to reference Camperi S, Ghanchitehrani M, Zilletti M et al (2016) Active vibration control of an inertial actuator subject to broadband excitation 744(1) Camperi S, Ghanchitehrani M, Zilletti M et al (2016) Active vibration control of an inertial actuator subject to broadband excitation 744(1)
88.
go back to reference Paulitsch C et al (2004) Design of a lightweight, electrodynamic, inertial actuator with integrated velocity sensor for active vibration control of a thin lightly-damped panel. In: Proceedings of ISMA 2004 Paulitsch C et al (2004) Design of a lightweight, electrodynamic, inertial actuator with integrated velocity sensor for active vibration control of a thin lightly-damped panel. In: Proceedings of ISMA 2004
89.
go back to reference Loussert G et al (2016) An efficient and optimal moving magnet actuator for active vibration control. In: 15th international conference on new actuators, Bremen, German Loussert G et al (2016) An efficient and optimal moving magnet actuator for active vibration control. In: 15th international conference on new actuators, Bremen, German
90.
go back to reference Monner HP, Monner HP (2005) Smart materials for active noise and vibration reduction. In: Noise and vibrations—emerging methods Monner HP, Monner HP (2005) Smart materials for active noise and vibration reduction. In: Noise and vibrations—emerging methods
91.
go back to reference Nelson PG (2002) Supporting active electro-pneumatic vibration isolation systems on platforms supported by STACIS TM ‘hard-mount’ piezoelectric isolation systems Nelson PG (2002) Supporting active electro-pneumatic vibration isolation systems on platforms supported by STACIS TM ‘hard-mount’ piezoelectric isolation systems
92.
go back to reference Sambavekar RV et al (2015) Active vibration control of a cantilever beam using PZT PATCH (SP-5H). Int J Eng Tech Res (IJETR) 3(5):37–39 Sambavekar RV et al (2015) Active vibration control of a cantilever beam using PZT PATCH (SP-5H). Int J Eng Tech Res (IJETR) 3(5):37–39
93.
go back to reference Kircali OF, Yaman Y, Nalbantoglu V et al (2008) Active vibration control of a smart beam by using a spatial approach. In: New developments in robotics automation and control, pp 1318–1322 Kircali OF, Yaman Y, Nalbantoglu V et al (2008) Active vibration control of a smart beam by using a spatial approach. In: New developments in robotics automation and control, pp 1318–1322
94.
go back to reference Rahman, Uralam N, Naushad M (2012) Active vibration control of a piezoelectric beam using PID controller: experimental study. Latin Am J Solids Struct 9(6):657–673CrossRef Rahman, Uralam N, Naushad M (2012) Active vibration control of a piezoelectric beam using PID controller: experimental study. Latin Am J Solids Struct 9(6):657–673CrossRef
95.
go back to reference Chhabra D, Narwal K, Singh P (2012) Design and analysis of piezoelectric smart beam for active vibration control. Int J Adv Res Technol 1:1–5 Chhabra D, Narwal K, Singh P (2012) Design and analysis of piezoelectric smart beam for active vibration control. Int J Adv Res Technol 1:1–5
96.
go back to reference Birman V (1993) Active control of composite plates using piezoelectric stiffeners. Int J Mech Sci 35(5):387–396MATHCrossRef Birman V (1993) Active control of composite plates using piezoelectric stiffeners. Int J Mech Sci 35(5):387–396MATHCrossRef
97.
go back to reference Li ZB, Chen H, Zhong YM et al (2010) Experimental research on PPF vibration control of flexible cantilever beam using PZT. J Shenzhen Polytechnic 09(5):1–5 Li ZB, Chen H, Zhong YM et al (2010) Experimental research on PPF vibration control of flexible cantilever beam using PZT. J Shenzhen Polytechnic 09(5):1–5
98.
go back to reference Zoric N, Simonovic A, Mitrovic Z et al (2013) Active vibration control of smart composite beams using PSO-optimized self-tuning fuzzy logic controller. J Acoust Soc Am 51(2):275–286 Zoric N, Simonovic A, Mitrovic Z et al (2013) Active vibration control of smart composite beams using PSO-optimized self-tuning fuzzy logic controller. J Acoust Soc Am 51(2):275–286
99.
go back to reference Yavuz Y et al (2002) Active vibration control of a smart plate. In: ICAS 2002 congress Yavuz Y et al (2002) Active vibration control of a smart plate. In: ICAS 2002 congress
100.
go back to reference Berkhoff AP, Wesselink JM (2011) Combined MIMO adaptive and decentralized controllers for broadband active noise and vibration control. Mech Syst Signal Process 25:1702–1714CrossRef Berkhoff AP, Wesselink JM (2011) Combined MIMO adaptive and decentralized controllers for broadband active noise and vibration control. Mech Syst Signal Process 25:1702–1714CrossRef
101.
go back to reference Cao Y et al (2012) Active control of low-frequency sound radiation by cylindrical shell with piezoelectric stack force actuators. J Sound Vib 331:2471–2484CrossRef Cao Y et al (2012) Active control of low-frequency sound radiation by cylindrical shell with piezoelectric stack force actuators. J Sound Vib 331:2471–2484CrossRef
102.
go back to reference Baillargeon BP (2002) Active vibration suppression of smart structures using piezoelectric shear actuators. The University of Maine Baillargeon BP (2002) Active vibration suppression of smart structures using piezoelectric shear actuators. The University of Maine
103.
go back to reference Nestorovic TT, Köppe H, Gabbert U (2006) Vibration control of a funnel-shaped shell structure with distributed piezoelectric actuators and sensors. Smart Mater Struct 15(4):1119–1132CrossRef Nestorovic TT, Köppe H, Gabbert U (2006) Vibration control of a funnel-shaped shell structure with distributed piezoelectric actuators and sensors. Smart Mater Struct 15(4):1119–1132CrossRef
104.
go back to reference Volkan N, Güçlü S, Ömer FK et al (2008) Active flutter control of a smart fin. In: 19th international conference on adaptive structures and technologies, Ascona, Switzerland Volkan N, Güçlü S, Ömer FK et al (2008) Active flutter control of a smart fin. In: 19th international conference on adaptive structures and technologies, Ascona, Switzerland
105.
go back to reference Zhao G (2014) Active structural acoustic control of rotating machinery using piezo-based rotating inertial actuators. In: Proceedings of ISMA 2014 including USD 2014 Zhao G (2014) Active structural acoustic control of rotating machinery using piezo-based rotating inertial actuators. In: Proceedings of ISMA 2014 including USD 2014
106.
go back to reference Sohn JW et al (2011) Vibration control of smart hull structure with optimally placed piezoelectric composite actuators. Int J Mech Sci 53:647–659CrossRef Sohn JW et al (2011) Vibration control of smart hull structure with optimally placed piezoelectric composite actuators. Int J Mech Sci 53:647–659CrossRef
107.
go back to reference Kim HS, Sohn JW, Sohn J, Choi SB (2013) Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control. Sensors 13:2131–2147CrossRef Kim HS, Sohn JW, Sohn J, Choi SB (2013) Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control. Sensors 13:2131–2147CrossRef
108.
go back to reference Kumar GV, Raja S (2012) Sudha V (2012) Finite element analysis and vibration control of a deep composite cylindrical shell using MFC actuators. Smart Mater Res 2090–3561:123–136 Kumar GV, Raja S (2012) Sudha V (2012) Finite element analysis and vibration control of a deep composite cylindrical shell using MFC actuators. Smart Mater Res 2090–3561:123–136
109.
go back to reference Williams RB, Park G, Inman DJ et al (2002) An overview of composite actuators with piezoceramic fibers. Proc SPIE Int Soc Opt Eng 4753:421–427 Williams RB, Park G, Inman DJ et al (2002) An overview of composite actuators with piezoceramic fibers. Proc SPIE Int Soc Opt Eng 4753:421–427
110.
go back to reference Leniowska L, Mazan D (2015) MFC sensors and actuators in active vibration control of the circular plate. Arch Acoust 40(2):257–265CrossRef Leniowska L, Mazan D (2015) MFC sensors and actuators in active vibration control of the circular plate. Arch Acoust 40(2):257–265CrossRef
111.
go back to reference Brennan AMC, Mcgowan AMR (1997) Piezoelectric power requirements for active vibration control. Proc SPIE Int Soc Opt Eng 114(9):1542–1570 Brennan AMC, Mcgowan AMR (1997) Piezoelectric power requirements for active vibration control. Proc SPIE Int Soc Opt Eng 114(9):1542–1570
112.
go back to reference Wachel JC, Smith DR (1991) Vibration troubleshooting of existing piping systems. Engineering Dynamics Incorporated Wachel JC, Smith DR (1991) Vibration troubleshooting of existing piping systems. Engineering Dynamics Incorporated
113.
go back to reference Kuhn GF, Morfey CL (1976) Transmission of low-frequency internal sound through pipe walls. J Sound Vib 47(2):147–161CrossRef Kuhn GF, Morfey CL (1976) Transmission of low-frequency internal sound through pipe walls. J Sound Vib 47(2):147–161CrossRef
114.
go back to reference Wachel JC, Tison JD (1987) Vibrations in reciprocating machinery and piping systems. In: Proceeding of the twenty-third turbo machinery symposium Wachel JC, Tison JD (1987) Vibrations in reciprocating machinery and piping systems. In: Proceeding of the twenty-third turbo machinery symposium
115.
go back to reference Grant I (2006) Flow induced vibrations in pipes, a finite element approach. Nagpur University Grant I (2006) Flow induced vibrations in pipes, a finite element approach. Nagpur University
116.
go back to reference Li B, Moore S (2014) Noise control for fluid power systems. In: Inter.Noise 2014 Li B, Moore S (2014) Noise control for fluid power systems. In: Inter.Noise 2014
117.
go back to reference Pan M, Hillis A, Johnston N (2014) Active control of fluid-bome noise in hydraulic systems using in-series and by-pass structures. In: Ukacc international conference on control, pp 355–360 Pan M, Hillis A, Johnston N (2014) Active control of fluid-bome noise in hydraulic systems using in-series and by-pass structures. In: Ukacc international conference on control, pp 355–360
118.
go back to reference Silcox RJ, Elliott SJ (1990) Active control of multi-dimensional random sound in ducts. NASA Silcox RJ, Elliott SJ (1990) Active control of multi-dimensional random sound in ducts. NASA
119.
go back to reference Variyart W, Brennan MJ (2004) Active control of the n = 2 axial propagating wave in an infinite in vacuo pipe. Smart Mater Struct 13(1):126–133CrossRef Variyart W, Brennan MJ (2004) Active control of the n = 2 axial propagating wave in an infinite in vacuo pipe. Smart Mater Struct 13(1):126–133CrossRef
120.
go back to reference Carsten B, Jürgen E, Fritz-Otto H (2009) Active control of vibrations in piping systems. In: 20th international conference on structural mechanics in reactor technology Carsten B, Jürgen E, Fritz-Otto H (2009) Active control of vibrations in piping systems. In: 20th international conference on structural mechanics in reactor technology
121.
go back to reference Pan X, Forrest JA, Juniper RG (2009) Optimal design of a control actuator for sound attenuation in a piping system excited by a positive displacement pump. In: Proceedings of ACOUSTICS 2009 Pan X, Forrest JA, Juniper RG (2009) Optimal design of a control actuator for sound attenuation in a piping system excited by a positive displacement pump. In: Proceedings of ACOUSTICS 2009
122.
go back to reference Kumar P, Jangid RS, Reddy GR (2013) Response of piping system with semi-active variable stiffness damper under tri-directional seismic excitation. Int J Struct Eng 258(2):130–143 Kumar P, Jangid RS, Reddy GR (2013) Response of piping system with semi-active variable stiffness damper under tri-directional seismic excitation. Int J Struct Eng 258(2):130–143
123.
go back to reference Wang Z, Sun YD (2014) Experimental research on active vibration control of pipe by inertial actuator and adaptive control. J Huaqiao Univ 91(5):725–734 Wang Z, Sun YD (2014) Experimental research on active vibration control of pipe by inertial actuator and adaptive control. J Huaqiao Univ 91(5):725–734
124.
go back to reference Cheer J, Daley S (2015) Broadband active control of noise and vibration in a fluid-filled pipeline using an array of non-intrusive structural actuators. In: Inter-Noise Cheer J, Daley S (2015) Broadband active control of noise and vibration in a fluid-filled pipeline using an array of non-intrusive structural actuators. In: Inter-Noise
125.
go back to reference Kela L (2010) Adaptive Helmholtz resonator in a hydraulic system. Int J Mech Aerosp Ind Mechatron Manuf Eng 4(8):684–691 Kela L (2010) Adaptive Helmholtz resonator in a hydraulic system. Int J Mech Aerosp Ind Mechatron Manuf Eng 4(8):684–691
126.
go back to reference Herold S (2012) Noise reduction of a sound field inside a cavity due to an adaptive Helmholtz resonator. In: Proceedings of ISMA 2012-USD 2012, pp 489–504 Herold S (2012) Noise reduction of a sound field inside a cavity due to an adaptive Helmholtz resonator. In: Proceedings of ISMA 2012-USD 2012, pp 489–504
Metadata
Title
Introduction
Authors
Fei Wang
Zhenping Weng
Lin He
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-3056-8_1

Premium Partners