Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Introduction

Author : Maohui Luo

Published in: The Dynamics and Mechanism of Human Thermal Adaptation in Building Environment

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

China building sector has been growing rapidly in recent years. From 2000 to 2013, the urban residential area increased from 9.5 to 23.4 billion m2. Figure 1.1 shows that Chinese total building energy consumption increased from 320 to 756 million tce. Under this context, how to effectively control building energy consumption and improve building environment quality has become a hot topic.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tsinghua University Building Energy Conservation Research Center (2015) China building energy conservation annual development research report, Beijing Tsinghua University Building Energy Conservation Research Center (2015) China building energy conservation annual development research report, Beijing
2.
3.
go back to reference Yang L (2010) Architectural climatology. China Building Industry Press, Beijing Yang L (2010) Architectural climatology. China Building Industry Press, Beijing
4.
go back to reference Yang L (2003) Research on building climate analysis and design strategy. Ph.D. thesis. Xi’an University of Architecture and Technology, Xi’an Yang L (2003) Research on building climate analysis and design strategy. Ph.D. thesis. Xi’an University of Architecture and Technology, Xi’an
5.
go back to reference Lin Y (2014) Climate adaptation of China’s climate and human thermal comfort. J Xi’an Univ Archit Technol 46(2):251–255 Lin Y (2014) Climate adaptation of China’s climate and human thermal comfort. J Xi’an Univ Archit Technol 46(2):251–255
6.
go back to reference Davis L, Gertler P (2015) Contribution of air conditioning adoption to future energy use under global warming. Proc Natl Acad Sci USA 112(19):5962–5967CrossRef Davis L, Gertler P (2015) Contribution of air conditioning adoption to future energy use under global warming. Proc Natl Acad Sci USA 112(19):5962–5967CrossRef
9.
go back to reference Akpinar-Ferrand E, Singh A (2010) Modeling increased demand of energy for air conditioners and consequent CO2 emissions to minimize health risks due to climate change in India. Environ. Sci. Pol. 13(8):702–712CrossRef Akpinar-Ferrand E, Singh A (2010) Modeling increased demand of energy for air conditioners and consequent CO2 emissions to minimize health risks due to climate change in India. Environ. Sci. Pol. 13(8):702–712CrossRef
11.
go back to reference Fanger PO (1970) Thermal comfort. Analysis and application in environment engineering. Danish Technology Press, Copenhagen Fanger PO (1970) Thermal comfort. Analysis and application in environment engineering. Danish Technology Press, Copenhagen
12.
go back to reference Technical Committee ISO/TC 159 and Technical Committee CEN/TC 122. ISO 7730 (2005) Ergonomics of the thermal environment—analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. European Committee for Standardization, UK Technical Committee ISO/TC 159 and Technical Committee CEN/TC 122. ISO 7730 (2005) Ergonomics of the thermal environment—analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. European Committee for Standardization, UK
13.
go back to reference ASHRAE (2013) Thermal environmental conditions for human occupancy. ASHRAE Standard 55, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, Georgia ASHRAE (2013) Thermal environmental conditions for human occupancy. ASHRAE Standard 55, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, Georgia
14.
go back to reference CEN (2007) Indoor environmental input parameters for design and assessment of energy performance of buildings: addressing indoor air quality, thermal environment, lighting and acoustics. EN 15251, European Committee for Standardization, Brussels CEN (2007) Indoor environmental input parameters for design and assessment of energy performance of buildings: addressing indoor air quality, thermal environment, lighting and acoustics. EN 15251, European Committee for Standardization, Brussels
15.
go back to reference GB/T (2012) Evaluation standard for indoor thermal environment in civil buildings, GB/T 50785. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, Beijing (in Chinese) GB/T (2012) Evaluation standard for indoor thermal environment in civil buildings, GB/T 50785. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, Beijing (in Chinese)
16.
go back to reference Humphreys MA (1976) Field studies of thermal comfort compared and applied. J Inst Heat Vent Eng 44(1):5–27 Humphreys MA (1976) Field studies of thermal comfort compared and applied. J Inst Heat Vent Eng 44(1):5–27
17.
go back to reference Emmerich S, Polidoro B, Axley J (2011) Impact of adaptive thermal comfort on climatic suitability of natural ventilation of office buildings. Energy Build 43(9):2101–2107CrossRef Emmerich S, Polidoro B, Axley J (2011) Impact of adaptive thermal comfort on climatic suitability of natural ventilation of office buildings. Energy Build 43(9):2101–2107CrossRef
18.
go back to reference Barlow S, Fiala D (2007) Occupant comfort in UK offices: how adaptive comfort theories might influence future low energy office refurbishment strategies. Energy Build 39:837–846CrossRef Barlow S, Fiala D (2007) Occupant comfort in UK offices: how adaptive comfort theories might influence future low energy office refurbishment strategies. Energy Build 39:837–846CrossRef
19.
go back to reference Indraganti M (2010) Using the adaptive model of thermal comfort for obtaining indoor neutral temperature: findings from a field study in Hyderabad, India. Build Environ 45:519–536CrossRef Indraganti M (2010) Using the adaptive model of thermal comfort for obtaining indoor neutral temperature: findings from a field study in Hyderabad, India. Build Environ 45:519–536CrossRef
20.
go back to reference Loonen R, Treka M, Costola D, Hensen J (2013) Climate adaptive building shells: state-of-the-art and future challenges. Renew Sustain Energy Rev 25:483–493 Loonen R, Treka M, Costola D, Hensen J (2013) Climate adaptive building shells: state-of-the-art and future challenges. Renew Sustain Energy Rev 25:483–493
21.
go back to reference de Dear RJ, Brager GS (2002) Thermal comfort in naturally ventilated buildings: revision to ASHRAE Standard 55. Energy Build 34:549–561CrossRef de Dear RJ, Brager GS (2002) Thermal comfort in naturally ventilated buildings: revision to ASHRAE Standard 55. Energy Build 34:549–561CrossRef
22.
go back to reference Luo M, Cao B, Damiens J, Lin B, Ouyang Q et al (2015) Evaluating thermal comfort in mixed-mode buildings: a field study in a subtropical climate. Build Environ 88:46–54CrossRef Luo M, Cao B, Damiens J, Lin B, Ouyang Q et al (2015) Evaluating thermal comfort in mixed-mode buildings: a field study in a subtropical climate. Build Environ 88:46–54CrossRef
23.
go back to reference Deuble MP, de Dear RJ (2012) Mixed-mode buildings: a double standard in occupants’ comfort expectation. Build Environ 54:53–60CrossRef Deuble MP, de Dear RJ (2012) Mixed-mode buildings: a double standard in occupants’ comfort expectation. Build Environ 54:53–60CrossRef
24.
go back to reference Halawa E, van Hoof J (2012) The adaptive approach to thermal comfort: a critical overview. Energy Build 51:101–110CrossRef Halawa E, van Hoof J (2012) The adaptive approach to thermal comfort: a critical overview. Energy Build 51:101–110CrossRef
25.
go back to reference de Dear R, Foldvary V, Zhang H, Arens E, Luo M et al (2016) Comfort is in the mind of the beholder: a review of progress in adaptive thermal comfort research over the past two decades. In: Proceedings of the 5th International Conference on Human-Environment System, Nagoya, Japan de Dear R, Foldvary V, Zhang H, Arens E, Luo M et al (2016) Comfort is in the mind of the beholder: a review of progress in adaptive thermal comfort research over the past two decades. In: Proceedings of the 5th International Conference on Human-Environment System, Nagoya, Japan
26.
go back to reference Nikolopoulou M, Steemers K (2003) Thermal comfort and psychological adaptation as a guide of designing urban spaces. Energy Build 35(1):95–101CrossRef Nikolopoulou M, Steemers K (2003) Thermal comfort and psychological adaptation as a guide of designing urban spaces. Energy Build 35(1):95–101CrossRef
27.
go back to reference Chen L, Ng E (2012) Outdoor thermal comfort and outdoor activities: a review of research in the past decade. Cities 29(2):118–125CrossRef Chen L, Ng E (2012) Outdoor thermal comfort and outdoor activities: a review of research in the past decade. Cities 29(2):118–125CrossRef
28.
go back to reference Akimoto T, Tanabe S, Yanai T, Sasaki M (2010) Thermal comfort and productivity—evaluation of workplace environment in a task conditioned office. Build Environ 45(1):45–50CrossRef Akimoto T, Tanabe S, Yanai T, Sasaki M (2010) Thermal comfort and productivity—evaluation of workplace environment in a task conditioned office. Build Environ 45(1):45–50CrossRef
29.
go back to reference Cui W, Cao G, Ouyang Q, Zhu Y (2013) Influence of dynamic environment with difference airflows on human performance. Build Environ 62(62):124–132CrossRef Cui W, Cao G, Ouyang Q, Zhu Y (2013) Influence of dynamic environment with difference airflows on human performance. Build Environ 62(62):124–132CrossRef
30.
go back to reference Lan L, Lian Z, Pan L (2010) The effects of air temperature on office worker’s well-being, workload and productivity—evaluated with subjective ratings. Appl Ergon 42(1):29–36CrossRef Lan L, Lian Z, Pan L (2010) The effects of air temperature on office worker’s well-being, workload and productivity—evaluated with subjective ratings. Appl Ergon 42(1):29–36CrossRef
31.
go back to reference Yang L, Yan H, Lam J (2014) Thermal comfort and building energy consumption implication—a review. Appl Energy 115(4):164–173CrossRef Yang L, Yan H, Lam J (2014) Thermal comfort and building energy consumption implication—a review. Appl Energy 115(4):164–173CrossRef
32.
go back to reference Kwong Q, Adam N, Sahari B (2014) Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: a review. Energy Build 68(314):547–557CrossRef Kwong Q, Adam N, Sahari B (2014) Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: a review. Energy Build 68(314):547–557CrossRef
33.
go back to reference Taleghani M, Tenpierik M, Kurvers S et al (2013) A review into thermal comfort in buildings. Energy Rev 26(10):201–215 Taleghani M, Tenpierik M, Kurvers S et al (2013) A review into thermal comfort in buildings. Energy Rev 26(10):201–215
34.
go back to reference Zomorodian Z, Tahsildoost M (2016) Thermal comfort in educational buildings: a review article. Sustain Energy Rev 56:895–906CrossRef Zomorodian Z, Tahsildoost M (2016) Thermal comfort in educational buildings: a review article. Sustain Energy Rev 56:895–906CrossRef
35.
go back to reference Khodakarami J, Nasrollahi N (2012) Thermal comfort in hospitals—a literature review. Renew Sustain Energy Rev 16(6):4071–4077CrossRef Khodakarami J, Nasrollahi N (2012) Thermal comfort in hospitals—a literature review. Renew Sustain Energy Rev 16(6):4071–4077CrossRef
36.
go back to reference Cui W, Wu T, Ouyang Q, Zhu Y (2016) Passenger thermal comfort and behavior: a field investigation in commercial aircraft cabins. Indoor Air Cui W, Wu T, Ouyang Q, Zhu Y (2016) Passenger thermal comfort and behavior: a field investigation in commercial aircraft cabins. Indoor Air
37.
go back to reference Lan L, Lian Z (2016) Ten questions concerning thermal environment and sleep quality. Build Environ 99:252–259CrossRef Lan L, Lian Z (2016) Ten questions concerning thermal environment and sleep quality. Build Environ 99:252–259CrossRef
38.
go back to reference de Dear R, Akimoto T, Arens E, Brager G et al (2013) Progress in thermal comfort research over the last twenty years. Indoor Air 23(6):442–461CrossRef de Dear R, Akimoto T, Arens E, Brager G et al (2013) Progress in thermal comfort research over the last twenty years. Indoor Air 23(6):442–461CrossRef
39.
go back to reference Rupp R, Vasquez N, Lamberts R (2015) A review of human thermal comfort in built environment. Energy Build 105:178–205CrossRef Rupp R, Vasquez N, Lamberts R (2015) A review of human thermal comfort in built environment. Energy Build 105:178–205CrossRef
40.
go back to reference Huang J, Zhang H (2011) Human and thermal environment. Science Press, Beijing Huang J, Zhang H (2011) Human and thermal environment. Science Press, Beijing
41.
go back to reference Mclntyre DA (1978) Seven-point scales of warmth. Build Sci Eng 45:215–226 Mclntyre DA (1978) Seven-point scales of warmth. Build Sci Eng 45:215–226
42.
go back to reference Zhang Y, Wang J, Chen H, Zhang J (2010) Thermal comfort in naturally ventilated buildings in hot-humide area. Build Environ 45(11):2562–2570CrossRef Zhang Y, Wang J, Chen H, Zhang J (2010) Thermal comfort in naturally ventilated buildings in hot-humide area. Build Environ 45(11):2562–2570CrossRef
43.
go back to reference Foldvary V, Cheung T, Zhang H et al (2018) Development of the ASHRAE global thermal comfort database II. Build Environ 142:502–512CrossRef Foldvary V, Cheung T, Zhang H et al (2018) Development of the ASHRAE global thermal comfort database II. Build Environ 142:502–512CrossRef
44.
go back to reference Gagge AP, Stolwijk JA, Hardy JD (1967) Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environ Res 1:1–20CrossRef Gagge AP, Stolwijk JA, Hardy JD (1967) Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environ Res 1:1–20CrossRef
45.
go back to reference Berglund LG (1979) Thermal acceptability. ASHRAE Trans 85(2):825–834 Berglund LG (1979) Thermal acceptability. ASHRAE Trans 85(2):825–834
46.
go back to reference Fanger PO (1967) Calculation of thermal comfort: introduction of a basic comfort equation. ASHRAE Trans 73III.4.1–III.4.20 Fanger PO (1967) Calculation of thermal comfort: introduction of a basic comfort equation. ASHRAE Trans 73III.4.1–III.4.20
47.
go back to reference Araújo VMD, Araújo EHS (1999) The applicability of ISO 7730 for the assessment of the thermal conditions of users of the buildings in Natal-Brazil. Proc Indoor Air 2:148–153 Araújo VMD, Araújo EHS (1999) The applicability of ISO 7730 for the assessment of the thermal conditions of users of the buildings in Natal-Brazil. Proc Indoor Air 2:148–153
48.
go back to reference Yoon DW, Sohn JY, Cho KH (1999) The comparison on the thermal comfort sensation between the results of questionnaire survey and the calculation of the PMV values. Proc Indoor Air 2:137–141 Yoon DW, Sohn JY, Cho KH (1999) The comparison on the thermal comfort sensation between the results of questionnaire survey and the calculation of the PMV values. Proc Indoor Air 2:137–141
49.
go back to reference Mayer E (1997) A new correlation between predicted mean votes (PMV) and predicted percentages of dissatisfied (PPD). Proc Healthy Build 2:189–194 Mayer E (1997) A new correlation between predicted mean votes (PMV) and predicted percentages of dissatisfied (PPD). Proc Healthy Build 2:189–194
50.
go back to reference Zhu Y et al (2016) Built Environment, 4th edn. Beijing, China Building Industry Press Zhu Y et al (2016) Built Environment, 4th edn. Beijing, China Building Industry Press
51.
go back to reference Madsen T, Olesen B, Kristensen N (1984) Comparison between operative and equivalent temperature under typical indoor conditions. ASHRAE Trans 90(1):1077–1090 Madsen T, Olesen B, Kristensen N (1984) Comparison between operative and equivalent temperature under typical indoor conditions. ASHRAE Trans 90(1):1077–1090
52.
go back to reference Gagge A, Fobelets A, Berglund L (1987) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–731 Gagge A, Fobelets A, Berglund L (1987) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–731
53.
go back to reference Ye G, Yang C, Chen Y, Li Y (2003) A new approach for measuring predicted mean vote (PMV) and standard effective temperature (SET). Build Environ 38(1):33–44CrossRef Ye G, Yang C, Chen Y, Li Y (2003) A new approach for measuring predicted mean vote (PMV) and standard effective temperature (SET). Build Environ 38(1):33–44CrossRef
54.
go back to reference Huang L, Arens E, Zhang H, Zhu Y (2014) Applicability of whole-body heat balance models for evaluating thermal sensation under non-uniform air movement in warm environments. Build Environ 75:108–113CrossRef Huang L, Arens E, Zhang H, Zhu Y (2014) Applicability of whole-body heat balance models for evaluating thermal sensation under non-uniform air movement in warm environments. Build Environ 75:108–113CrossRef
55.
go back to reference Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56:421–428CrossRef Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56:421–428CrossRef
56.
go back to reference Budd G (2008) Wet-bulb globe temperature (WBGT)-its history and its limitations. J Sci Med Sport 11(1):20–32CrossRef Budd G (2008) Wet-bulb globe temperature (WBGT)-its history and its limitations. J Sci Med Sport 11(1):20–32CrossRef
57.
go back to reference Schiavon S, Hoyt T, Piccioli A (2013) Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55. Build Simul 7(4):321–334CrossRef Schiavon S, Hoyt T, Piccioli A (2013) Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55. Build Simul 7(4):321–334CrossRef
58.
go back to reference Zhou X (2008) Study on influencing factors and evaluation indexes for human thermal sensation in warm conditions. Ph.D. thesis. Tsinghua University, Beijing Zhou X (2008) Study on influencing factors and evaluation indexes for human thermal sensation in warm conditions. Ph.D. thesis. Tsinghua University, Beijing
59.
go back to reference Cao B (2012) Research on the impacts of climate and built environment on human thermal adaptation. Ph.D. thesis. Tsinghua University, Beijing Cao B (2012) Research on the impacts of climate and built environment on human thermal adaptation. Ph.D. thesis. Tsinghua University, Beijing
60.
go back to reference Yan H (2013) Study on adaptive thermal comfort on the basis of regions and climates of China. Ph.D. thesis. Xi’an University of Architecture Technology, Xi’an Yan H (2013) Study on adaptive thermal comfort on the basis of regions and climates of China. Ph.D. thesis. Xi’an University of Architecture Technology, Xi’an
61.
go back to reference Brager G, Paliaga G, de Dear R (2004) Operable windows, personal control and occupant comfort. ASHRAE Trans 110(2):17–35 Brager G, Paliaga G, de Dear R (2004) Operable windows, personal control and occupant comfort. ASHRAE Trans 110(2):17–35
62.
go back to reference de Dear R, Leow K, Foo S (1991) Thermal comfort in the humid tropics: field experiments in air conditioned and naturally ventilated buildings in Singapore. Int J Biometeorol 34(4):259–265CrossRef de Dear R, Leow K, Foo S (1991) Thermal comfort in the humid tropics: field experiments in air conditioned and naturally ventilated buildings in Singapore. Int J Biometeorol 34(4):259–265CrossRef
63.
go back to reference Candido C (2010) Indoor air movement acceptability and thermal comfort in hot-humid climates. Ph.D. thesis. Macquarie University, Sydney Candido C (2010) Indoor air movement acceptability and thermal comfort in hot-humid climates. Ph.D. thesis. Macquarie University, Sydney
64.
go back to reference Mustapa M, Zaki S, Rijal H, Hagishima A, Ali M (2016) Thermal comfort and occupant adaptive behavior in Japanese university buildings with free running and cooling mode offices during summer. Build Environ 105(15):332–342CrossRef Mustapa M, Zaki S, Rijal H, Hagishima A, Ali M (2016) Thermal comfort and occupant adaptive behavior in Japanese university buildings with free running and cooling mode offices during summer. Build Environ 105(15):332–342CrossRef
65.
go back to reference Wang Z, Fang X, Lian L (2002) Field experiments on occupant thermal comfort in Harbin. J Harbin Inst Technol 34(4):500–504 Wang Z, Fang X, Lian L (2002) Field experiments on occupant thermal comfort in Harbin. J Harbin Inst Technol 34(4):500–504
66.
go back to reference Zhang L (2010) Study on adaptation and thermal comfort of residents in Harbin. Master thesis. Harbin Institute of Technology, Harbin Zhang L (2010) Study on adaptation and thermal comfort of residents in Harbin. Master thesis. Harbin Institute of Technology, Harbin
67.
go back to reference Wang Z, Zhang L, Zhao J et al (2010) Thermal comfort for naturally ventilated residential buildings in Harbin. Energy Build 42(12):2406–2415CrossRef Wang Z, Zhang L, Zhao J et al (2010) Thermal comfort for naturally ventilated residential buildings in Harbin. Energy Build 42(12):2406–2415CrossRef
68.
go back to reference Xia Y, Zhao R, Jiang Y (1999) Thermal comfort in naturally ventilated houses in Beijing. HV&AC 29(2):1–5 Xia Y, Zhao R, Jiang Y (1999) Thermal comfort in naturally ventilated houses in Beijing. HV&AC 29(2):1–5
69.
go back to reference Yang Q (2010) Adaptive thermal comfort model for hot summer and cold winter zone. Master thesis. Xi’an University of Architecture Technology, Xi’an Yang Q (2010) Adaptive thermal comfort model for hot summer and cold winter zone. Master thesis. Xi’an University of Architecture Technology, Xi’an
70.
go back to reference Li J, Yang L, Liu J (2008) Adaptive thermal comfort model for hot summer and cold winter zone. HV&AC 38(7):20–24 Li J, Yang L, Liu J (2008) Adaptive thermal comfort model for hot summer and cold winter zone. HV&AC 38(7):20–24
71.
go back to reference Liu J (2007) Research on indoor thermal environment and human thermal comfort in natural ventilation buildings in hot summer and cold winter areas. Master thesis. Chongqing University, Chongqing Liu J (2007) Research on indoor thermal environment and human thermal comfort in natural ventilation buildings in hot summer and cold winter areas. Master thesis. Chongqing University, Chongqing
72.
go back to reference Ye J, Yang C, Li W et al (2006) Gender and thermal comfort in non-air-conditioned environment. HV&AC 36(5):17–21 Ye J, Yang C, Li W et al (2006) Gender and thermal comfort in non-air-conditioned environment. HV&AC 36(5):17–21
73.
go back to reference Yang W (2007) Research on thermal comfort adaptation in residential buildings in hot summer and cold winter areas in summer. Master thesis. Hunan University, Changsha Yang W (2007) Research on thermal comfort adaptation in residential buildings in hot summer and cold winter areas in summer. Master thesis. Hunan University, Changsha
74.
go back to reference Chen H, Zhang Y et al (2010) Thermal comfort in naturally ventilated buildings in hot-humid area of China in summer: an example in Guangzhou. HV&AC 40(2):96–101 Chen H, Zhang Y et al (2010) Thermal comfort in naturally ventilated buildings in hot-humid area of China in summer: an example in Guangzhou. HV&AC 40(2):96–101
75.
go back to reference Fanger PO, Toftum J (2001) Thermal comfort in the future—excellence and expectation. In: Proceedings on moving thermal comfort standards into 21st century, Windsor Fanger PO, Toftum J (2001) Thermal comfort in the future—excellence and expectation. In: Proceedings on moving thermal comfort standards into 21st century, Windsor
76.
go back to reference Arens E, Humphreys M, de Dear R, Zhang H (2010) Are ‘class A’ temperature requirements realistic or desirable? Build Environ 45:4–10CrossRef Arens E, Humphreys M, de Dear R, Zhang H (2010) Are ‘class A’ temperature requirements realistic or desirable? Build Environ 45:4–10CrossRef
77.
go back to reference de Dear R (1998) Global database of thermal comfort field experiments. ASHRAE Trans 104:1141–1152 de Dear R (1998) Global database of thermal comfort field experiments. ASHRAE Trans 104:1141–1152
78.
go back to reference Hensel H (1981) Thermoreception and temperature regulation. Academic Press Inc., Burlington Hensel H (1981) Thermoreception and temperature regulation. Academic Press Inc., Burlington
79.
go back to reference Cabanac M (1996) Pleasure and joy, and their role in human life. In: Proceedings of the 7th international conference on indoor air quality and climate, Nagoya Cabanac M (1996) Pleasure and joy, and their role in human life. In: Proceedings of the 7th international conference on indoor air quality and climate, Nagoya
80.
go back to reference Zhao R (2000) Discussion on thermal comfort. HV&AC 30(3):25–26 Zhao R (2000) Discussion on thermal comfort. HV&AC 30(3):25–26
81.
go back to reference de Dear R (2011) Revisiting an old hypothesis of human thermal perception: alliesthesia. Build Res Inf 39(2):108–117CrossRef de Dear R (2011) Revisiting an old hypothesis of human thermal perception: alliesthesia. Build Res Inf 39(2):108–117CrossRef
82.
go back to reference Parkinson T, de Dear R, Candido C (2016) Thermal pleasure in built environments: different thermoregulatory zones. Build Res Inf 44(1):20–33CrossRef Parkinson T, de Dear R, Candido C (2016) Thermal pleasure in built environments: different thermoregulatory zones. Build Res Inf 44(1):20–33CrossRef
83.
go back to reference Zhu Y, Ouyang Q, Cao B, Zhou X, Yu J (2016) Dynamic thermal environment and thermal comfort. Indoor Air 26(1):125–147CrossRef Zhu Y, Ouyang Q, Cao B, Zhou X, Yu J (2016) Dynamic thermal environment and thermal comfort. Indoor Air 26(1):125–147CrossRef
84.
go back to reference Zhu Y (2015) Thermal comfort: how much is too much. Global Archit 7:35–37 Zhu Y (2015) Thermal comfort: how much is too much. Global Archit 7:35–37
85.
go back to reference van Marken Lichtenbelt W, Vanhommerig J, Smelders N et al (2009) Cold activated brown adipose tissue in healthy men. New Engl J Med 360(15):1500–1508 van Marken Lichtenbelt W, Vanhommerig J, Smelders N et al (2009) Cold activated brown adipose tissue in healthy men. New Engl J Med 360(15):1500–1508
86.
go back to reference van der Lans A, Hoeks J, Brans B et al (2013) Cold acclimation recruits human brown fat and increases no-shivering thermogenesis. J Clin Investig 123(8):3395–3403CrossRef van der Lans A, Hoeks J, Brans B et al (2013) Cold acclimation recruits human brown fat and increases no-shivering thermogenesis. J Clin Investig 123(8):3395–3403CrossRef
87.
go back to reference van Marken Lichtenbelt W, Schrauwen P (2011) Implications of nonshivering thermogenesis of energy balance regulation in humans. Am J Physiol Regul 301(2):285–296 van Marken Lichtenbelt W, Schrauwen P (2011) Implications of nonshivering thermogenesis of energy balance regulation in humans. Am J Physiol Regul 301(2):285–296
88.
go back to reference Johnson F, Mavrogiann A, Ucci M et al (2011) Could increased time spent in a thermal comfort zone contribute to population increases in obesity. Obes Rev 12(7):543–551CrossRef Johnson F, Mavrogiann A, Ucci M et al (2011) Could increased time spent in a thermal comfort zone contribute to population increases in obesity. Obes Rev 12(7):543–551CrossRef
89.
go back to reference Hippel P, Benson R (2014) Obesity and the natural environment across US countries. Am J Publ Health 104(7):1287–1293CrossRef Hippel P, Benson R (2014) Obesity and the natural environment across US countries. Am J Publ Health 104(7):1287–1293CrossRef
90.
go back to reference Bain A, Jay O (2011) Does summer in a humid continental climate elicit an acclimatization of human thermoregulatory responses? Eur J Appl Physiol 111(6):1197–1205CrossRef Bain A, Jay O (2011) Does summer in a humid continental climate elicit an acclimatization of human thermoregulatory responses? Eur J Appl Physiol 111(6):1197–1205CrossRef
91.
go back to reference Yu J, Ouyang Q, Zhu Y et al (2012) A comparison of the thermal adaptability of people accustomed to air conditioned environments and naturally ventilated environments. Indoor Air 22:110–118CrossRef Yu J, Ouyang Q, Zhu Y et al (2012) A comparison of the thermal adaptability of people accustomed to air conditioned environments and naturally ventilated environments. Indoor Air 22:110–118CrossRef
92.
go back to reference Zhang Y (2013) Indoor air quality control: the challenges and responsibilities of HVAC researchers in the new century (in Chinese). HV&AC 42(12):1–7 Zhang Y (2013) Indoor air quality control: the challenges and responsibilities of HVAC researchers in the new century (in Chinese). HV&AC 42(12):1–7
93.
go back to reference Tan L, Dai Z, Liu Y (2003) Effects on human thermal feeling and neurobehavioral function in air-conditioning environment. Chin J Publ Health Eng 2(4):193–195 Tan L, Dai Z, Liu Y (2003) Effects on human thermal feeling and neurobehavioral function in air-conditioning environment. Chin J Publ Health Eng 2(4):193–195
94.
go back to reference Cao B, Shang Q, Dai Z et al (2013) The impact of air-conditioning usage on sick building syndrome during summer in China. Indoor Built Environ 22:490–497CrossRef Cao B, Shang Q, Dai Z et al (2013) The impact of air-conditioning usage on sick building syndrome during summer in China. Indoor Built Environ 22:490–497CrossRef
95.
go back to reference Humphreys M (1978) Outdoor temperatures and comfort indoors. Build Res Pract 6(2) Humphreys M (1978) Outdoor temperatures and comfort indoors. Build Res Pract 6(2)
96.
go back to reference Nicol J (1974) An analysis of some observations of thermal comfort in Roorkee, India and Baghdad, Iraq. Ann Hum Biol 1(4):411–426CrossRef Nicol J (1974) An analysis of some observations of thermal comfort in Roorkee, India and Baghdad, Iraq. Ann Hum Biol 1(4):411–426CrossRef
97.
go back to reference Auliciems A (1969) Effects of weather on indoor thermal comfort. Int J Biometerorol 13:147–162CrossRef Auliciems A (1969) Effects of weather on indoor thermal comfort. Int J Biometerorol 13:147–162CrossRef
98.
go back to reference Auliciems A (1982) Psychophysical criteria for global thermal zones of building design. Int J Biometeorol 26(8):69–86 Auliciems A (1982) Psychophysical criteria for global thermal zones of building design. Int J Biometeorol 26(8):69–86
99.
go back to reference de Dear R, Brager G, Readon J, Nicol F (1998) Developing an adaptive model of thermal comfort and preference. ASHRAE Trans 104(1):145–167 de Dear R, Brager G, Readon J, Nicol F (1998) Developing an adaptive model of thermal comfort and preference. ASHRAE Trans 104(1):145–167
100.
go back to reference Mclntyre D (1982) Chamber studies—reduction and absurdum? Energy Build 5:89–96CrossRef Mclntyre D (1982) Chamber studies—reduction and absurdum? Energy Build 5:89–96CrossRef
101.
go back to reference Baker N, Standeven M (1994) Comfort criteria for passively cooled buildings. A PASCOOL task. Renew Energy 5(8):977–984CrossRef Baker N, Standeven M (1994) Comfort criteria for passively cooled buildings. A PASCOOL task. Renew Energy 5(8):977–984CrossRef
102.
go back to reference Oseland N (1994) Comparision of the predicted and reported thermal sensation vote in homes during winter and summer. Energy Build 21(1):45–54CrossRef Oseland N (1994) Comparision of the predicted and reported thermal sensation vote in homes during winter and summer. Energy Build 21(1):45–54CrossRef
103.
go back to reference Brager GS, de Dear RJ (1998) Thermal adaptation in the built environment: a literature review. Energy Build 27(1):83–96CrossRef Brager GS, de Dear RJ (1998) Thermal adaptation in the built environment: a literature review. Energy Build 27(1):83–96CrossRef
104.
go back to reference Zhang Y, Zhao R (2010) Literature review and discussion on human thermal adaptation in built environment. J HV&AC 40(9):38–48 Zhang Y, Zhao R (2010) Literature review and discussion on human thermal adaptation in built environment. J HV&AC 40(9):38–48
105.
go back to reference Karjalainen S (2012) Thermal comfort and gender: a literature review. Indoor Air 22(2):96–109CrossRef Karjalainen S (2012) Thermal comfort and gender: a literature review. Indoor Air 22(2):96–109CrossRef
106.
go back to reference Indraganti M, Rao K (2010) Effect of age, gender, economic group and tenure on thermal comfort: a field study in residential buildings in hot and dry climate with seasonal variations. Energy Build 42(3):273–281CrossRef Indraganti M, Rao K (2010) Effect of age, gender, economic group and tenure on thermal comfort: a field study in residential buildings in hot and dry climate with seasonal variations. Energy Build 42(3):273–281CrossRef
107.
go back to reference Schiavon S, Lee K (2013) Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures. Build Environ 59:250–260CrossRef Schiavon S, Lee K (2013) Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures. Build Environ 59:250–260CrossRef
108.
go back to reference Zhai Y, Elsworth C, Arens E, Zhang H, Zhang Y, Zhao L (2015) Using air movement for comfort during moederate exercise. Build Environ 94(1):344–352CrossRef Zhai Y, Elsworth C, Arens E, Zhang H, Zhang Y, Zhao L (2015) Using air movement for comfort during moederate exercise. Build Environ 94(1):344–352CrossRef
109.
go back to reference Humphreys MA, Nicol JF (1998) Understanding the adaptive approach to thermal comfort. ASHRAE Trans 104(1):991–1004 Humphreys MA, Nicol JF (1998) Understanding the adaptive approach to thermal comfort. ASHRAE Trans 104(1):991–1004
110.
go back to reference Kaczmarczyk J, Melikov A, Sliva D (2010) Effect of warm air supplied facially on occupants’ comfort. Build Environ 45:848–855CrossRef Kaczmarczyk J, Melikov A, Sliva D (2010) Effect of warm air supplied facially on occupants’ comfort. Build Environ 45:848–855CrossRef
111.
go back to reference Zhai Y, Zhang H, Zhang Y, Pasut W, Arens E, Lin Q (2013) Comfort under personally controlled air movement in warm and humid environments. Build Environ 65:109–117CrossRef Zhai Y, Zhang H, Zhang Y, Pasut W, Arens E, Lin Q (2013) Comfort under personally controlled air movement in warm and humid environments. Build Environ 65:109–117CrossRef
112.
go back to reference Huang L, Ouyang Q, Zhu Y, Jiang L (2013) A study about the demand for air movement in warm environment. Build Environ 61:27–33CrossRef Huang L, Ouyang Q, Zhu Y, Jiang L (2013) A study about the demand for air movement in warm environment. Build Environ 61:27–33CrossRef
113.
go back to reference Candido C, de Dear R, Lamberts R, Bittencourt L (2010) Air movement acceptability limits and thermal comfort in Brazil’s hot humid climate zone. Build Environ 45(1):222–229CrossRef Candido C, de Dear R, Lamberts R, Bittencourt L (2010) Air movement acceptability limits and thermal comfort in Brazil’s hot humid climate zone. Build Environ 45(1):222–229CrossRef
114.
go back to reference Zhang H, Arens E, Kim DE, Buchberger E, Bauman F, Huizenga C (2010) Comfort, perceived air quality, and work performance in a low-power task-ambient conditioning system. Build Environ 45:29–39CrossRef Zhang H, Arens E, Kim DE, Buchberger E, Bauman F, Huizenga C (2010) Comfort, perceived air quality, and work performance in a low-power task-ambient conditioning system. Build Environ 45:29–39CrossRef
115.
go back to reference Zhang H, Arens E, Pasut W (2011) Air temperature thresholds for indoor comfort and perceived air quality. Build Res Inf 39:134–144CrossRef Zhang H, Arens E, Pasut W (2011) Air temperature thresholds for indoor comfort and perceived air quality. Build Res Inf 39:134–144CrossRef
116.
go back to reference Bauman F, Carter T, Baughman A, Arens E (1998) Field study of the impact of a desktop task/ambient conditioning system in office buildings. ASHRAE Trans 104(98):1153–1171 Bauman F, Carter T, Baughman A, Arens E (1998) Field study of the impact of a desktop task/ambient conditioning system in office buildings. ASHRAE Trans 104(98):1153–1171
117.
go back to reference Zhang H, Arens E, Zhai Y (2015) A review of the corrective power of personal comfort systems in non-neutral ambient environments. Build Environ 91:15–41CrossRef Zhang H, Arens E, Zhai Y (2015) A review of the corrective power of personal comfort systems in non-neutral ambient environments. Build Environ 91:15–41CrossRef
118.
go back to reference van Marken Lichtenbelt W, Kingma B, van der Lans A, Schellen L (2014) Cold exposure—an approach to increasing energy expenditure in humans. Trends Endocrinol Metab 25(4):165–167 van Marken Lichtenbelt W, Kingma B, van der Lans A, Schellen L (2014) Cold exposure—an approach to increasing energy expenditure in humans. Trends Endocrinol Metab 25(4):165–167
119.
go back to reference Hanssen M, Hoeks J, Brans B, van der Lans A et al (2015) Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med 21(8):863–865CrossRef Hanssen M, Hoeks J, Brans B, van der Lans A et al (2015) Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med 21(8):863–865CrossRef
120.
go back to reference Pallubinsky H, Schellen L, Kingma B, van Marken Lichtenbelt W (2015) Human thermoneutral zone and thermal comfort zone: effects of mild heat acclimation. Extreme Physiol Med 4(1):1 Pallubinsky H, Schellen L, Kingma B, van Marken Lichtenbelt W (2015) Human thermoneutral zone and thermal comfort zone: effects of mild heat acclimation. Extreme Physiol Med 4(1):1
121.
go back to reference Yu J (2012) Studies on the effects of physiological acclimation on thermal responses of people accustomed to different thermal indoor environments. Donghua University, Shanghai Yu J (2012) Studies on the effects of physiological acclimation on thermal responses of people accustomed to different thermal indoor environments. Donghua University, Shanghai
122.
go back to reference Fanger PO, Toftum J (2002) Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy Build 34(6):533–536CrossRef Fanger PO, Toftum J (2002) Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy Build 34(6):533–536CrossRef
123.
go back to reference Wong NH, Khoo SS (2003) Thermal comfort in classrooms in the tropics. Energy Build 35(4):337–351CrossRef Wong NH, Khoo SS (2003) Thermal comfort in classrooms in the tropics. Energy Build 35(4):337–351CrossRef
124.
go back to reference Zhang G, Zheng C, Yang W et al (2007) Thermal comfort investigation of naturally ventilated classrooms in a subtropical region. Indoor Built Environ 16(2):148–158CrossRef Zhang G, Zheng C, Yang W et al (2007) Thermal comfort investigation of naturally ventilated classrooms in a subtropical region. Indoor Built Environ 16(2):148–158CrossRef
125.
go back to reference Zhou X, Zhu Y, Qin O et al (2014) Experimental study of the influence of anticipated control on human thermal sensation and thermal comfort. Indoor Air 24(2):171–177CrossRef Zhou X, Zhu Y, Qin O et al (2014) Experimental study of the influence of anticipated control on human thermal sensation and thermal comfort. Indoor Air 24(2):171–177CrossRef
126.
go back to reference Leaman A, Bordass B (2007) Are users more tolerant of ‘green’ buildings? Build Res Inf 35(6):662–673CrossRef Leaman A, Bordass B (2007) Are users more tolerant of ‘green’ buildings? Build Res Inf 35(6):662–673CrossRef
127.
go back to reference Leaman A, Bordass B (2001) Assessing building performance in use 4: the probe occupant surveys and their implications. Build Res Inf 29(2):129–143CrossRef Leaman A, Bordass B (2001) Assessing building performance in use 4: the probe occupant surveys and their implications. Build Res Inf 29(2):129–143CrossRef
128.
go back to reference Nicol F, Humphreys M (2010) Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN15251. Build Environ 45(1):11–17CrossRef Nicol F, Humphreys M (2010) Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN15251. Build Environ 45(1):11–17CrossRef
129.
go back to reference Cartney K, Nicol F (2002) Developing and adaptive control algorithm for Europe. Energy Build 34(6):623–635CrossRef Cartney K, Nicol F (2002) Developing and adaptive control algorithm for Europe. Energy Build 34(6):623–635CrossRef
130.
go back to reference Toftum J (2012) Indoor Climate Survey at Espergaerde Gymnasium. Master thesis. Technical University of Denmark Toftum J (2012) Indoor Climate Survey at Espergaerde Gymnasium. Master thesis. Technical University of Denmark
131.
go back to reference Singh M, Mahapatra S, Teller J (2014) Relation between indoor thermal environment and renovation in Liege residential buildings. Therm Sci 18(3):889–902 Singh M, Mahapatra S, Teller J (2014) Relation between indoor thermal environment and renovation in Liege residential buildings. Therm Sci 18(3):889–902
132.
go back to reference Kim H (2012) Methodology for rating a building’s overall performance based on the ASHRAE/CIBSE/USGBC performance measurement protocols for commercial buildings. Ph.D. thesis. Texas A&M University Kim H (2012) Methodology for rating a building’s overall performance based on the ASHRAE/CIBSE/USGBC performance measurement protocols for commercial buildings. Ph.D. thesis. Texas A&M University
133.
go back to reference Langevin J, Gurian P, Wen J (2015) Tracking the human-building interaction: a longitudinal field study of occupant behavior in air-conditioned offices. J Environ Psychol 42:94–115CrossRef Langevin J, Gurian P, Wen J (2015) Tracking the human-building interaction: a longitudinal field study of occupant behavior in air-conditioned offices. J Environ Psychol 42:94–115CrossRef
134.
go back to reference Drake S, de Dear R, Alessi A, Deuble M (2010) Occupant comfort in naturally ventilated and mixed-mode spaces within air-conditioned offices. Archit Sci Rev 53(3):297–306CrossRef Drake S, de Dear R, Alessi A, Deuble M (2010) Occupant comfort in naturally ventilated and mixed-mode spaces within air-conditioned offices. Archit Sci Rev 53(3):297–306CrossRef
135.
go back to reference Vecchi R, Candido C, Lamberts R (2012) Thermal history and its influence on occupants’ thermal acceptability and cooling preferences in warm-humid climates: a new desire for comfort? In: Proceedings of 7th Windsor conference: the changing context of comfort in an unpredictable world. Windsor, UK Vecchi R, Candido C, Lamberts R (2012) Thermal history and its influence on occupants’ thermal acceptability and cooling preferences in warm-humid climates: a new desire for comfort? In: Proceedings of 7th Windsor conference: the changing context of comfort in an unpredictable world. Windsor, UK
136.
go back to reference Romero R, Bojorquez G, Corral M, Gallegos R (2013) Energy and the occupant’s thermal perception of low-income dwellings in hot-dry climate: Mexicali, Mexico. Renew Energy 49:267–270CrossRef Romero R, Bojorquez G, Corral M, Gallegos R (2013) Energy and the occupant’s thermal perception of low-income dwellings in hot-dry climate: Mexicali, Mexico. Renew Energy 49:267–270CrossRef
137.
go back to reference Rijal H, Humphreys M, Nicol F (2015) Adaptive thermal comfort in Japanese houses during the summer season: behavioral Adaptation and the effect of humidity. Buildings 5(3):1037–1054CrossRef Rijal H, Humphreys M, Nicol F (2015) Adaptive thermal comfort in Japanese houses during the summer season: behavioral Adaptation and the effect of humidity. Buildings 5(3):1037–1054CrossRef
138.
go back to reference Indraganti M, Ooka R, Rijal H, Brager G (2014) Adaptive model of thermal comfort for offices in hot and humid climates of China. Build Environ 74:39–53CrossRef Indraganti M, Ooka R, Rijal H, Brager G (2014) Adaptive model of thermal comfort for offices in hot and humid climates of China. Build Environ 74:39–53CrossRef
139.
go back to reference Andamon M (2006) Thermal comfort and building energy consumption in the Philippine context. In: The 23rd conference on passive and low energy architecture, Geneva, Switzerland Andamon M (2006) Thermal comfort and building energy consumption in the Philippine context. In: The 23rd conference on passive and low energy architecture, Geneva, Switzerland
140.
go back to reference Heidari S, Sharples S (2002) A comparative analysis of short-term and long-term thermal comfort surveys in Iran. Energy Build 34(6):607–614CrossRef Heidari S, Sharples S (2002) A comparative analysis of short-term and long-term thermal comfort surveys in Iran. Energy Build 34(6):607–614CrossRef
141.
go back to reference Oseland N (1998) Acceptable temperature ranges in naturally ventilated and air-conditioned offices. ASHTAE Trans 104:1018 Oseland N (1998) Acceptable temperature ranges in naturally ventilated and air-conditioned offices. ASHTAE Trans 104:1018
142.
go back to reference Bouden C, Ghrab N (2005) An adaptive thermal comfort model for the Ynisian context: a field study results. Energy Build 37(9):952–963CrossRef Bouden C, Ghrab N (2005) An adaptive thermal comfort model for the Ynisian context: a field study results. Energy Build 37(9):952–963CrossRef
143.
go back to reference Yu J, Cao G, Cui W, Ouyang Q, Zhu Y (2013) People who live in a cold climate: thermal adaptation differences based on availability of heating. Indoor Air 23(4):303–310CrossRef Yu J, Cao G, Cui W, Ouyang Q, Zhu Y (2013) People who live in a cold climate: thermal adaptation differences based on availability of heating. Indoor Air 23(4):303–310CrossRef
144.
go back to reference Yang L, Yan H, Xu Y, Lam J (2013) Residential thermal environment in cold climates at high altitudes and building energy use implications. Energy Build 62:139–145CrossRef Yang L, Yan H, Xu Y, Lam J (2013) Residential thermal environment in cold climates at high altitudes and building energy use implications. Energy Build 62:139–145CrossRef
145.
go back to reference Yao R, Li B, Liu J (2009) A theoretical adaptive model of thermal comfort—adaptive predicted mean vote (aPMV). Build Environ 44(10):2089–2096CrossRef Yao R, Li B, Liu J (2009) A theoretical adaptive model of thermal comfort—adaptive predicted mean vote (aPMV). Build Environ 44(10):2089–2096CrossRef
146.
go back to reference Yao R, Liu J, Li B (2010) Occupants’ adaptive responses and perception of thermal environment in naturally conditioned university classrooms. Appl Energy 87(3):1015–1022CrossRef Yao R, Liu J, Li B (2010) Occupants’ adaptive responses and perception of thermal environment in naturally conditioned university classrooms. Appl Energy 87(3):1015–1022CrossRef
147.
go back to reference Liu H, Zheng W, Li B et al (2011) Behavioral adaptation of indoor thermal environment in hot-summer and cold-winter zone. J Central South Univ 42(6):1805–1812 Liu H, Zheng W, Li B et al (2011) Behavioral adaptation of indoor thermal environment in hot-summer and cold-winter zone. J Central South Univ 42(6):1805–1812
148.
go back to reference Wang Z, Li A, He Y et al (2012) Human thermal comfort and thermal adaptability in Harbin. J Harbin Inst Technol 44(8):48–52 Wang Z, Li A, He Y et al (2012) Human thermal comfort and thermal adaptability in Harbin. J Harbin Inst Technol 44(8):48–52
149.
go back to reference Ning H, Wang Z, Zhang X, Ji Y (2016) Adaptive thermal comfort in university dormitories in the severe cold area of China. Build Environ 99:161–169CrossRef Ning H, Wang Z, Zhang X, Ji Y (2016) Adaptive thermal comfort in university dormitories in the severe cold area of China. Build Environ 99:161–169CrossRef
150.
go back to reference Zhang Y (2011) Review and discussion on thermal adaptation research approaches in built environment. J HV&AC 41(2):9–17 Zhang Y (2011) Review and discussion on thermal adaptation research approaches in built environment. J HV&AC 41(2):9–17
151.
go back to reference Zhang Y, Chen H, Meng Q (2013) Thermal comfort in buildings with split air-conditioners in hot-humid area of China. Build Environ 64:213–224CrossRef Zhang Y, Chen H, Meng Q (2013) Thermal comfort in buildings with split air-conditioners in hot-humid area of China. Build Environ 64:213–224CrossRef
152.
go back to reference Zhang Y, Wang J, Chen H, Zhang J, Meng Q (2010) Thermal comfort in naturally ventilated buildings in hot-humid area of China. Build Environ 45(11):2652–2570 Zhang Y, Wang J, Chen H, Zhang J, Meng Q (2010) Thermal comfort in naturally ventilated buildings in hot-humid area of China. Build Environ 45(11):2652–2570
153.
go back to reference Zhang Y, Chen H, Wang J, Meng Q (2016) Thermal comfort of people in the hot and humid area of China—impacts of season, climate, and thermal history. Indoor Air 26(5):820–830CrossRef Zhang Y, Chen H, Wang J, Meng Q (2016) Thermal comfort of people in the hot and humid area of China—impacts of season, climate, and thermal history. Indoor Air 26(5):820–830CrossRef
154.
go back to reference Mavrogianni A, Johnson F, Ucci M et al (2013) Historic variations in winter indoor domestic temperatures and potential implications for body weight gain. Indoor and Built Environment. 22(2):360–375CrossRef Mavrogianni A, Johnson F, Ucci M et al (2013) Historic variations in winter indoor domestic temperatures and potential implications for body weight gain. Indoor and Built Environment. 22(2):360–375CrossRef
Metadata
Title
Introduction
Author
Maohui Luo
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-1165-3_1