Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

1. Introduction

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Think about any day in your life. How many of our possessions contain, at least, one microchip that are made of semiconductors? Semiconductors are the enablers of our modern society, being silicon the most important of them. There are many things that can be done with Si chips. Unfortunately, detecting infrared rays, at least at room temperature, is not one of them. In this chapter, we explore the current infrared sensing technology and their limitations. Then, we introduce the concept of supersaturated materials, and how it could be a potential solution for getting faster, cheaper, and more environmentally friendly infrared detectors, based on Si, and operating at room-temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Grundmann M (2021) The physics of semiconductors. Springer International Publishing. ISBN: 978-3-030-51568-3 Grundmann M (2021) The physics of semiconductors. Springer International Publishing. ISBN: 978-3-030-51568-3
2.
go back to reference Neamen D (2003) Semiconductor physics and devices. McGraw-Hill. ISBN: 978-0-072-32107-4 Neamen D (2003) Semiconductor physics and devices. McGraw-Hill. ISBN: 978-0-072-32107-4
3.
go back to reference Sze SM, Kwok KNg (2007) Physics of semiconductors devices, 3rd edn. Wiley. ISBN: 978-0-471-14323-9 Sze SM, Kwok KNg (2007) Physics of semiconductors devices, 3rd edn. Wiley. ISBN: 978-0-471-14323-9
4.
go back to reference Hook JR, Hall HE (1991) Solid state physics, 2nd edn. Wiley. ISBN: 978-0-471-92805-8 Hook JR, Hall HE (1991) Solid state physics, 2nd edn. Wiley. ISBN: 978-0-471-92805-8
5.
go back to reference Ashcroft NW, Mermin ND (1976) Solid state physics. Brooks Cole. ISBN: 978-0-030-83993-1 Ashcroft NW, Mermin ND (1976) Solid state physics. Brooks Cole. ISBN: 978-0-030-83993-1
6.
go back to reference Busch G (1989) Early history of the physics and chemistry of semiconductors-from doubts to fact in a hundred years. Eur J Phys 10:254–264. Doi:10.1088/0143-0807/10/4/002 Busch G (1989) Early history of the physics and chemistry of semiconductors-from doubts to fact in a hundred years. Eur J Phys 10:254–264. Doi:10.1088/0143-0807/10/4/002
7.
go back to reference Emsley J (2003) Book review: nature’s building blocks: an A–Z guide to the elements. Oxford University Press, Oxford Emsley J (2003) Book review: nature’s building blocks: an A–Z guide to the elements. Oxford University Press, Oxford
8.
go back to reference Neamen DA (1997) Semiconductor physics and devices, vol 3. McGraw-Hill, New York Neamen DA (1997) Semiconductor physics and devices, vol 3. McGraw-Hill, New York
9.
go back to reference Wolf S (2003) Microchip manufacturing. Lattice Press, pp 584 Wolf S (2003) Microchip manufacturing. Lattice Press, pp 584
10.
go back to reference Friedrich J (2016) Methods for bulk growth of inorganic crystals: crystal growth. Reference Module in Materials Science and Materials Engineering, Elsevier Friedrich J (2016) Methods for bulk growth of inorganic crystals: crystal growth. Reference Module in Materials Science and Materials Engineering, Elsevier
13.
go back to reference Radziemska E (2003) Thermal performance of Si and GaAs based solar cells and modules: a review. Prog Energy Combust Sci 29:407–424. Doi:10.1016/s0360-1285(03)00032-7 Radziemska E (2003) Thermal performance of Si and GaAs based solar cells and modules: a review. Prog Energy Combust Sci 29:407–424. Doi:10.1016/s0360-1285(03)00032-7
14.
go back to reference Rogalski A (2012) History of infrared detectors. Opto-Electron Rev 20: 279–308 Rogalski A (2012) History of infrared detectors. Opto-Electron Rev 20: 279–308
15.
go back to reference Hulstrom R, Bird R, Riordan C (1985) Spectral solar irradiance data sets for selected terrestrial conditions. Sol Cells 15:365–391 Hulstrom R, Bird R, Riordan C (1985) Spectral solar irradiance data sets for selected terrestrial conditions. Sol Cells 15:365–391
16.
go back to reference Miller JL (1994) Principles of infrared technolog: a practical guide to the state of the art. Springer 1: 523 Miller JL (1994) Principles of infrared technolog: a practical guide to the state of the art. Springer 1: 523
17.
go back to reference Miller JL, Friedman EJ (2003) Photonics rules of thumb, 2nd edn. Spie Press Book Miller JL, Friedman EJ (2003) Photonics rules of thumb, 2nd edn. Spie Press Book
19.
go back to reference Vatsia ML et al. (1972) Night-sky radiant sterance from 450 to 2000 nanometres. Army Electronics Command. Fort Monmouth, NJ. AD-750 609, 42 Vatsia ML et al. (1972) Night-sky radiant sterance from 450 to 2000 nanometres. Army Electronics Command. Fort Monmouth, NJ. AD-750 609, 42
20.
go back to reference Voshell A, Dhar N, Rana MM (2017) Materials for microbolometers: vanadium oxide or silicon derivatives. Proceedings volume 10209, image sensing technologies: materials, devices, systems, and applications IV; 102090 M SPIE Voshell A, Dhar N, Rana MM (2017) Materials for microbolometers: vanadium oxide or silicon derivatives. Proceedings volume 10209, image sensing technologies: materials, devices, systems, and applications IV; 102090 M SPIE
21.
go back to reference Kadlec EA (2011) Thermal detecting in the long wafe infrared and very long wave infrared regions. PhD dissertation, 67 Kadlec EA (2011) Thermal detecting in the long wafe infrared and very long wave infrared regions. PhD dissertation, 67
23.
go back to reference Rogalski A (2002) Infrared detectors: an overview. Infrared Phys Techn 43:187–210 Rogalski A (2002) Infrared detectors: an overview. Infrared Phys Techn 43:187–210
27.
go back to reference Ngo HT, Tao L, Zhang M, Livingston A, Asari VK (2005) A visibility improvement system for low vision drivers by nonlinear enhancement of fused visible and infrared video. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Ngo HT, Tao L, Zhang M, Livingston A, Asari VK (2005) A visibility improvement system for low vision drivers by nonlinear enhancement of fused visible and infrared video. IEEE Computer Society Conference on Computer Vision and Pattern Recognition
28.
go back to reference Haas H, Yin L, Wang Y, Chen C (2016) What is LiFi? J Light Technol 34:1533–1544 Haas H, Yin L, Wang Y, Chen C (2016) What is LiFi? J Light Technol 34:1533–1544
30.
go back to reference Alkholidi AG et al. (2014) Free space optical communication—theory and practices. IntechOpen 55 Alkholidi AG et al. (2014) Free space optical communication—theory and practices. IntechOpen 55
32.
go back to reference Dhariwal SR, Ojha VN (1982) Band-gap narrowing in heavily doped silicon. Solid State Electron 25:909–911 Dhariwal SR, Ojha VN (1982) Band-gap narrowing in heavily doped silicon. Solid State Electron 25:909–911
33.
go back to reference Lowney JR (1985) Band-gap narrowing in the space-charge region of heavily doped silicon diodes. Solid State Electron 28:187–191 Lowney JR (1985) Band-gap narrowing in the space-charge region of heavily doped silicon diodes. Solid State Electron 28:187–191
34.
go back to reference Mnatsakanov T., Pomortseva LI, Yakovlev DG (1994) Estimate of the effective narrowing of the band-gap in heavily-doped layers of silicon structures. Semicond 28:1059–1061 Mnatsakanov T., Pomortseva LI, Yakovlev DG (1994) Estimate of the effective narrowing of the band-gap in heavily-doped layers of silicon structures. Semicond 28:1059–1061
35.
go back to reference Matsubara T, Toyozawa Y (1961) Theory of impurity band conduction in semiconductors. Prog Theor Phys 26:739–756 Matsubara T, Toyozawa Y (1961) Theory of impurity band conduction in semiconductors. Prog Theor Phys 26:739–756
36.
go back to reference Mott NF, Twose WD (1961) The theory of impurity conduction. Adv Phys 10:107–163 Mott NF, Twose WD (1961) The theory of impurity conduction. Adv Phys 10:107–163
37.
go back to reference Klaassen DBM, Slotboom JW, de Graaff HC (1992) Unified apparent bandgap narrowing in n- and p-type silicon. Solid-State Electronics 35(2) Klaassen DBM, Slotboom JW, de Graaff HC (1992) Unified apparent bandgap narrowing in n- and p-type silicon. Solid-State Electronics 35(2)
38.
go back to reference Jones SW (2008) Diffusion in silicon. IC Knowledge, LLC Jones SW (2008) Diffusion in silicon. IC Knowledge, LLC
39.
go back to reference Shalimova KV (1985) Physics of semiconductors. Energoatomizdat, Moscow Shalimova KV (1985) Physics of semiconductors. Energoatomizdat, Moscow
40.
go back to reference Mott NF (1968) Metal-insulator transition. Rev Mod Phys 40(7) Mott NF (1968) Metal-insulator transition. Rev Mod Phys 40(7)
41.
go back to reference Belitz D, Kirkpatrick TR (1994) The Anderson-Mott transition. Rev Mod Phys 66:261–380 Belitz D, Kirkpatrick TR (1994) The Anderson-Mott transition. Rev Mod Phys 66:261–380
42.
go back to reference Luque A, Marti A (1997) Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys Rev Lett 78:5014–5017 Luque A, Marti A (1997) Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys Rev Lett 78:5014–5017
43.
go back to reference Olea J et al. (2010) High quality Ti-implanted Si layers above the Mott limit. J Appl Phys 107 Olea J et al. (2010) High quality Ti-implanted Si layers above the Mott limit. J Appl Phys 107
44.
go back to reference Schibli E, Milnes AG (1967) Deep impurities in silicon. Mater Sci Eng 2:173–180 Schibli E, Milnes AG (1967) Deep impurities in silicon. Mater Sci Eng 2:173–180
45.
go back to reference Mott NF (1949) The basis of the electron theory of metals, with special reference to the transition metals. Proc Phys Soc A 62(7) Mott NF (1949) The basis of the electron theory of metals, with special reference to the transition metals. Proc Phys Soc A 62(7)
46.
go back to reference Newman BK, Sher M-J, Mazur E, Buonassisi T (2011) Reactivation of sub-bandgap absorption in chalcogen-hyperdoped silicon. App Phys Let 98:251905 Newman BK, Sher M-J, Mazur E, Buonassisi T (2011) Reactivation of sub-bandgap absorption in chalcogen-hyperdoped silicon. App Phys Let 98:251905
47.
go back to reference Casalino M, Coppola G, Iodice et al. (2010) Near-Infrared sub-Bandgap all-silicon photodetectors: state of the art and perspectives. Sensors 10:10571–10600 Casalino M, Coppola G, Iodice et al. (2010) Near-Infrared sub-Bandgap all-silicon photodetectors: state of the art and perspectives. Sensors 10:10571–10600
48.
go back to reference Olea J (2009) Procesos de implantación iónica para semiconductores de banda intermedia. Thesis dissertation Olea J (2009) Procesos de implantación iónica para semiconductores de banda intermedia. Thesis dissertation
49.
go back to reference Gonzalez-Diaz G et al. (2009) Intermediate band mobility in heavily titanium-doped silicon layers. Sol Energ Mat Sol C 93:1668–1673 Gonzalez-Diaz G et al. (2009) Intermediate band mobility in heavily titanium-doped silicon layers. Sol Energ Mat Sol C 93:1668–1673
50.
go back to reference Olea J, Gonzalez-Diaz G, Pastor D, Martil I (2009) Electronic transport properties of ti-impurity band in Si. J Phys D Appl Phys 42 Olea J, Gonzalez-Diaz G, Pastor D, Martil I (2009) Electronic transport properties of ti-impurity band in Si. J Phys D Appl Phys 42
51.
go back to reference Olea J et al. (2009) High quality Ti-implanted Si layers above solid solubility limit. Proceedings of the 2009 Spanish conference on electron devices, pp 38–41 Olea J et al. (2009) High quality Ti-implanted Si layers above solid solubility limit. Proceedings of the 2009 Spanish conference on electron devices, pp 38–41
52.
go back to reference Olea J, Pastor D, Martil I, Gonzalez-Diaz G (2010) Thermal stability of intermediate band behavior in Ti implanted Si. Sol Energ Mat Sol C 94:1907–1911 Olea J, Pastor D, Martil I, Gonzalez-Diaz G (2010) Thermal stability of intermediate band behavior in Ti implanted Si. Sol Energ Mat Sol C 94:1907–1911
53.
go back to reference Pastor D et al. (2011) UV and visible Raman scattering of ultraheavily Ti implanted Si layers for intermediate band formation. Semicond Sci Tech 26 Pastor D et al. (2011) UV and visible Raman scattering of ultraheavily Ti implanted Si layers for intermediate band formation. Semicond Sci Tech 26
54.
go back to reference Olea J, Pastor D, Toledano-Luque M, Martil I, Gonzalez-Diaz G (2011) Depth profile study of Ti implanted Si at very high doses. J Appl Phys 110 Olea J, Pastor D, Toledano-Luque M, Martil I, Gonzalez-Diaz G (2011) Depth profile study of Ti implanted Si at very high doses. J Appl Phys 110
55.
go back to reference Olea J, del Prado A, Pastor D, Martil I, Gonzalez-Diaz G (2011) Sub-bandgap absorption in Ti implanted Si over the Mott limit. J Appl Phys 109 Olea J, del Prado A, Pastor D, Martil I, Gonzalez-Diaz G (2011) Sub-bandgap absorption in Ti implanted Si over the Mott limit. J Appl Phys 109
56.
go back to reference Olea J et al. (2011) Two-layer hall effect model for intermediate band Ti-implanted silicon. J Appl Phys 109 Olea J et al. (2011) Two-layer hall effect model for intermediate band Ti-implanted silicon. J Appl Phys 109
57.
go back to reference Pastor D et al. (2012) Insulator to metallic transition due to intermediate band formation in Ti-implanted silicon. Sol Energ Mat Sol C 104:159–164 Pastor D et al. (2012) Insulator to metallic transition due to intermediate band formation in Ti-implanted silicon. Sol Energ Mat Sol C 104:159–164
58.
go back to reference Olea J et al. (2012) Low temperature intermediate band metallic behavior in Ti implanted Si. Thin Solid Films 520:6614–6618 Olea J et al. (2012) Low temperature intermediate band metallic behavior in Ti implanted Si. Thin Solid Films 520:6614–6618
59.
go back to reference Mathiot D, Hocine S (1989) Titanium-related deep levels in silicon—a reexamination. J Appl Phys 66:5862–5867 Mathiot D, Hocine S (1989) Titanium-related deep levels in silicon—a reexamination. J Appl Phys 66:5862–5867
60.
go back to reference Hocine SAMD (1988) Titanium diffusion in silicon. Appl Phys Lett 53:3 Hocine SAMD (1988) Titanium diffusion in silicon. Appl Phys Lett 53:3
61.
go back to reference Ertekin E et al. (2012) Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin. Phys Rev Lett 108 Ertekin E et al. (2012) Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin. Phys Rev Lett 108
62.
go back to reference Mailoa JP et al. (2014) Room-temperature sub-band gap optoelectronic response of hyperdoped silicon. Nat Commun 5 Mailoa JP et al. (2014) Room-temperature sub-band gap optoelectronic response of hyperdoped silicon. Nat Commun 5
63.
go back to reference Franta B et al. (2015) Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing. J Appl Phys 118 Franta B et al. (2015) Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing. J Appl Phys 118
64.
go back to reference Yang W et al. (2017) Au-rich filamentary behavior and associated subband gap optical absorption in hyperdoped Si. Phy Rev Mater 1 Yang W et al. (2017) Au-rich filamentary behavior and associated subband gap optical absorption in hyperdoped Si. Phy Rev Mater 1
65.
go back to reference Liu F et al. (2017) Realizing the insulator-to-metal transition in Se-hyperdoped Si via non-equilibrium material processing. J Phys D Appl Phys 50 Liu F et al. (2017) Realizing the insulator-to-metal transition in Se-hyperdoped Si via non-equilibrium material processing. J Phys D Appl Phys 50
66.
go back to reference Liu F et al. (2018) On the insulator-to-metal transition in titanium-implanted silicon. Sci Rep-Uk 8 Liu F et al. (2018) On the insulator-to-metal transition in titanium-implanted silicon. Sci Rep-Uk 8
67.
go back to reference Jones RC (1957) Quantum efficiency of photoconductors. Proc. IRIS 2 Jones RC (1957) Quantum efficiency of photoconductors. Proc. IRIS 2
68.
go back to reference Jones RC (1960) Proposal of the detectivity D* for detectors limited by radiation noise. J Opt Soc Am 50:1058–1059 Jones RC (1960) Proposal of the detectivity D* for detectors limited by radiation noise. J Opt Soc Am 50:1058–1059
71.
go back to reference Graf RF (1999) Modern dictionary of electronics 7th edition, p 869. Newnes Elsevier Graf RF (1999) Modern dictionary of electronics 7th edition, p 869. Newnes Elsevier
72.
go back to reference Janesick JR (2001) Scientific charge-coupled devices. Spie Press Book 1:920 Janesick JR (2001) Scientific charge-coupled devices. Spie Press Book 1:920
74.
go back to reference Fowler BLX, Vu P (2006) CMOS image sensors—past present and future. Society for imaging science and technology ICIS ‘06 international congress of imaging science, 8 Fowler BLX, Vu P (2006) CMOS image sensors—past present and future. Society for imaging science and technology ICIS ‘06 international congress of imaging science, 8
75.
go back to reference Theuwissen AJP (2008) CMOS image sensors: State-of-the-art. Solid State Electron 52:1401–1406 Theuwissen AJP (2008) CMOS image sensors: State-of-the-art. Solid State Electron 52:1401–1406
77.
go back to reference Garcia-Hemme E (2015) Respuesta infrarroja en silicio mediante implantación iónica de metales de transición. Thesis dissertation Garcia-Hemme E (2015) Respuesta infrarroja en silicio mediante implantación iónica de metales de transición. Thesis dissertation
Metadata
Title
Introduction
Author
Daniel Montero Álvarez
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-63826-9_1