Skip to main content
Top
Published in:
Cover of the book

2015 | OriginalPaper | Chapter

1. Introduction

Authors : Sujuan Yu, Jingfu Liu

Published in: Silver Nanoparticles in the Environment

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to their unique physical and chemical properties, silver nanoparticles (AgNPs) are extensively used in electronics, catalysts, biosensors, medical areas, and large commercial antibacterial products, which has paralleled growing public and regulatory concerns as to the potential risks they may pose to humans and the environmental organisms. Aiming to give a brief introduction of AgNPs, this chapter describes the history, general physical and chemical properties, main applications, as well as environmental concerns of AgNPs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wadhera A, Fung M (2005) Systemic argyria associated with ingestion of colloidal silver. Dermatol Online J 11(1):12. Wadhera A, Fung M (2005) Systemic argyria associated with ingestion of colloidal silver. Dermatol Online J 11(1):12.
2.
go back to reference Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26(2):117–130. doi:10.1016/s0305-4179(99)00108-4CrossRef Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26(2):117–130. doi:10.1016/s0305-4179(99)00108-4CrossRef
3.
go back to reference Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370. doi:10.1016/S0079-6468(08)70024-9CrossRef Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370. doi:10.1016/S0079-6468(08)70024-9CrossRef
4.
go back to reference Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26(2):131–138. doi:10.1016/s0305-4179(99)00116-3CrossRef Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26(2):131–138. doi:10.1016/s0305-4179(99)00116-3CrossRef
5.
go back to reference Drake PL, Hazelwood KJ (2005) Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 49(7):575–585. doi:10.1093/annhyg/mei019CrossRef Drake PL, Hazelwood KJ (2005) Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 49(7):575–585. doi:10.1093/annhyg/mei019CrossRef
6.
go back to reference Luoma SN (2008) Silver nanotechnologies and the environment: old problems or new challenges? Woodrow Wilson International Center for Scholars, Washington, DC Luoma SN (2008) Silver nanotechnologies and the environment: old problems or new challenges? Woodrow Wilson International Center for Scholars, Washington, DC
7.
go back to reference Nowack B, Krug H, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(7):3189–3189. doi:10.1021/es103316qCrossRef Nowack B, Krug H, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(7):3189–3189. doi:10.1021/es103316qCrossRef
8.
9.
go back to reference Paal C (1902) On colloidal silver. Berichte Der Deutschen Chemischen Gesellschaft 35:2224–2236. doi:10.1002/cber.190203502182CrossRef Paal C (1902) On colloidal silver. Berichte Der Deutschen Chemischen Gesellschaft 35:2224–2236. doi:10.1002/cber.190203502182CrossRef
10.
go back to reference Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48(2):173–179. doi:10.1111/j.1472-765X.2008.02510.xCrossRef Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48(2):173–179. doi:10.1111/j.1472-765X.2008.02510.xCrossRef
11.
go back to reference Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24(1):135–141. doi:10.1007/s10534-010-9381-6CrossRef Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24(1):135–141. doi:10.1007/s10534-010-9381-6CrossRef
12.
go back to reference Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3(2):168–171. doi:10.1016/j.nano.2007.02.001CrossRef Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3(2):168–171. doi:10.1016/j.nano.2007.02.001CrossRef
13.
go back to reference Lara HH, Ayala-Nunez NV, Turrent LDI, Padilla CR (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26(4):615–621. doi:10.1007/s11274-009-0211-3CrossRef Lara HH, Ayala-Nunez NV, Turrent LDI, Padilla CR (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26(4):615–621. doi:10.1007/s11274-009-0211-3CrossRef
14.
go back to reference Wright JB, Lam K, Hansen D, Burrell RE (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 27(4):344–350. doi:10.1016/S0196-6553(99)70055-6CrossRef Wright JB, Lam K, Hansen D, Burrell RE (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 27(4):344–350. doi:10.1016/S0196-6553(99)70055-6CrossRef
15.
go back to reference Sun RWY, Chen R, Chung NPY, Ho CM, Lin CLS, Che CM (2005) Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Commun (40):5059–5061. doi:10.1039/b510984a Sun RWY, Chen R, Chung NPY, Ho CM, Lin CLS, Che CM (2005) Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Commun (40):5059–5061. doi:10.1039/b510984a
16.
go back to reference Lu L, Sun RWY, Chen R, Hui CK, Ho CM, Luk JM, Lau GKK, Che CM (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13(2):253–262 Lu L, Sun RWY, Chen R, Hui CK, Ho CM, Luk JM, Lau GKK, Che CM (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther 13(2):253–262
17.
go back to reference Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R (2009) Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug Chem 20(8):1497–1502. doi:10.1021/bc900215bCrossRef Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R (2009) Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug Chem 20(8):1497–1502. doi:10.1021/bc900215bCrossRef
18.
go back to reference Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720. doi:10.1128/aem.02218-06CrossRef Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720. doi:10.1128/aem.02218-06CrossRef
19.
go back to reference El Badawy AM Silva RG Morris B Scheckel KG Suidan MT Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1):283–287. doi:10.1021/es1034188CrossRef El Badawy AM Silva RG Morris B Scheckel KG Suidan MT Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1):283–287. doi:10.1021/es1034188CrossRef
20.
go back to reference Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408(5):999–1006. doi:10.1016/j.scitotenv.2009.11.003CrossRef Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408(5):999–1006. doi:10.1016/j.scitotenv.2009.11.003CrossRef
21.
go back to reference Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176(1):1–12. doi:10.1016/j.toxlet.2007.10.004CrossRef Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176(1):1–12. doi:10.1016/j.toxlet.2007.10.004CrossRef
23.
go back to reference Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588. doi:10.1016/j.tibtech.2010.07.006CrossRef Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588. doi:10.1016/j.tibtech.2010.07.006CrossRef
24.
go back to reference Wijnhoven SWP, Peijnenburg W, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van de Meent D, Dekkers S, De Jong WH, Van Zijverden M, Sips A, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):109–138. doi:10.1080/17435390902725914CrossRef Wijnhoven SWP, Peijnenburg W, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van de Meent D, Dekkers S, De Jong WH, Van Zijverden M, Sips A, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):109–138. doi:10.1080/17435390902725914CrossRef
25.
go back to reference Ye Q, Zhao JS, Huo FF, Wang J, Cheng SY, Kang TF, Dai HX (2011) Nanosized Ag/alpha-MnO(2) catalysts highly active for the low-temperature oxidation of carbon monoxide and benzene. Catal Today 175(1):603–609. doi:10.1016/j.cattod.2011.04.008CrossRef Ye Q, Zhao JS, Huo FF, Wang J, Cheng SY, Kang TF, Dai HX (2011) Nanosized Ag/alpha-MnO(2) catalysts highly active for the low-temperature oxidation of carbon monoxide and benzene. Catal Today 175(1):603–609. doi:10.1016/j.cattod.2011.04.008CrossRef
26.
go back to reference Ai LH, Zeng CM, Wang QM (2011) One-step solvothermal synthesis of Ag-Fe(3)O(4) composite as a magnetically recyclable catalyst for reduction of Rhodamine B. Catal Commun 14(1):68–73. doi:10.1016/j.catcom.2011.07.014CrossRef Ai LH, Zeng CM, Wang QM (2011) One-step solvothermal synthesis of Ag-Fe(3)O(4) composite as a magnetically recyclable catalyst for reduction of Rhodamine B. Catal Commun 14(1):68–73. doi:10.1016/j.catcom.2011.07.014CrossRef
27.
go back to reference Naik B, Hazra S, Prasad VS, Ghosh NN (2011) Synthesis of Ag nanoparticles within the pores of SBA-15: an efficient catalyst for reduction of 4-nitrophenol. Catal Commun 12(12):1104–1108. doi:10.1016/j.catcom.2011.03.028CrossRef Naik B, Hazra S, Prasad VS, Ghosh NN (2011) Synthesis of Ag nanoparticles within the pores of SBA-15: an efficient catalyst for reduction of 4-nitrophenol. Catal Commun 12(12):1104–1108. doi:10.1016/j.catcom.2011.03.028CrossRef
28.
go back to reference Manesh KM, Gopalan AI, Lee KP, Komathi S (2010) Silver nanoparticles distributed into polyaniline bridged silica network: a functional nanocatalyst having synergistic influence for catalysis. Catal Commun 11(10):913–918. doi:10.1016/j.catcom.2010.03.013CrossRef Manesh KM, Gopalan AI, Lee KP, Komathi S (2010) Silver nanoparticles distributed into polyaniline bridged silica network: a functional nanocatalyst having synergistic influence for catalysis. Catal Commun 11(10):913–918. doi:10.1016/j.catcom.2010.03.013CrossRef
29.
go back to reference Tate J, Rogers JA, Jones CDW, Vyas B, Murphy DW, Li WJ, Bao ZA, Slusher RE, Dodabalapur A, Katz HE (2000) Anodization and microcontact printing on electroless silver: solution-based fabrication procedures for low-voltage electronic systems with organic active components. Langmuir 16(14):6054–6060. doi:10.1021/la991646bCrossRef Tate J, Rogers JA, Jones CDW, Vyas B, Murphy DW, Li WJ, Bao ZA, Slusher RE, Dodabalapur A, Katz HE (2000) Anodization and microcontact printing on electroless silver: solution-based fabrication procedures for low-voltage electronic systems with organic active components. Langmuir 16(14):6054–6060. doi:10.1021/la991646bCrossRef
30.
go back to reference Li YN, Wu YL, Ong BS (2005) Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J Am Chem Soc 127(10):3266–3267. doi:10.1021/ja043425kCrossRef Li YN, Wu YL, Ong BS (2005) Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J Am Chem Soc 127(10):3266–3267. doi:10.1021/ja043425kCrossRef
31.
go back to reference Qian XM, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37(5):912–920. doi:10.1039/b708839fCrossRef Qian XM, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37(5):912–920. doi:10.1039/b708839fCrossRef
32.
go back to reference Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540. doi:10.1126/science.297.5586.1536CrossRef Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540. doi:10.1126/science.297.5586.1536CrossRef
33.
go back to reference Zhang M, Ye B-C (2011) Colorimetric chiral recognition of enantiomers using the nucleotide-capped silver nanoparticles. Anal Chem 83(5):1504–1509. doi:10.1021/ac102922fCrossRef Zhang M, Ye B-C (2011) Colorimetric chiral recognition of enantiomers using the nucleotide-capped silver nanoparticles. Anal Chem 83(5):1504–1509. doi:10.1021/ac102922fCrossRef
34.
go back to reference Ozyurek M, Gungor N, Baki S, Guclu K, Apak R (2012) Development of a silver nanoparticle-based method for the antioxidant capacity measurement of polyphenols. Anal Chem 84(18):8052–8059. doi:10.1021/ac301925bCrossRef Ozyurek M, Gungor N, Baki S, Guclu K, Apak R (2012) Development of a silver nanoparticle-based method for the antioxidant capacity measurement of polyphenols. Anal Chem 84(18):8052–8059. doi:10.1021/ac301925bCrossRef
35.
go back to reference Roy B, Bairi P, Nandi AK (2011) Selective colorimetric sensing of mercury(II) using turn off-turn on mechanism from riboflavin stabilized silver nanoparticles in aqueous medium. Analyst 136(18):3605–3607. doi:10.1039/c1an15459aCrossRef Roy B, Bairi P, Nandi AK (2011) Selective colorimetric sensing of mercury(II) using turn off-turn on mechanism from riboflavin stabilized silver nanoparticles in aqueous medium. Analyst 136(18):3605–3607. doi:10.1039/c1an15459aCrossRef
36.
go back to reference Wei H, Chen C, Han B, Wang E (2008) Enzyme colorimetric assay using unmodified silver nanoparticles. Anal Chem 80(18):7051–7055. doi:10.1021/ac801144tCrossRef Wei H, Chen C, Han B, Wang E (2008) Enzyme colorimetric assay using unmodified silver nanoparticles. Anal Chem 80(18):7051–7055. doi:10.1021/ac801144tCrossRef
37.
go back to reference Chen S, Hai X, Chen XW, Wang JH (2014) In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal Chem 86(13):6689–6694. doi:10.1021/ac501497dCrossRef Chen S, Hai X, Chen XW, Wang JH (2014) In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal Chem 86(13):6689–6694. doi:10.1021/ac501497dCrossRef
38.
go back to reference Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1(2):133–143. doi:10.1021/nn700048yCrossRef Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1(2):133–143. doi:10.1021/nn700048yCrossRef
39.
go back to reference Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47(2):1082–1090. doi:10.1021/es302973yCrossRef Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47(2):1082–1090. doi:10.1021/es302973yCrossRef
40.
go back to reference Yin LY, Cheng YW, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45(6):2360–2367. doi:10.1021/es103995xCrossRef Yin LY, Cheng YW, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45(6):2360–2367. doi:10.1021/es103995xCrossRef
41.
go back to reference Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499. doi:10.1016/j.chemosphere.2011.10.013CrossRef Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499. doi:10.1016/j.chemosphere.2011.10.013CrossRef
42.
go back to reference Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407(19):5243–5246. doi:10.1016/j.scitotenv.2009.06.024CrossRef Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407(19):5243–5246. doi:10.1016/j.scitotenv.2009.06.024CrossRef
43.
go back to reference Piccapietra F, Allue CG, Sigg L, Behra R (2012) Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environ Sci Technol 46(13):7390–7397. doi:10.1021/es300734mCrossRef Piccapietra F, Allue CG, Sigg L, Behra R (2012) Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environ Sci Technol 46(13):7390–7397. doi:10.1021/es300734mCrossRef
44.
go back to reference Garcia-Aonso J, Khan FR, Misra SK, Turmaine M, Smith BD, Rainbow PS, Luoma SN, Valsami-Jones E (2011) Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor. Environ Sci Technol 45(10):4630–4636. doi:10.1021/es2005122CrossRef Garcia-Aonso J, Khan FR, Misra SK, Turmaine M, Smith BD, Rainbow PS, Luoma SN, Valsami-Jones E (2011) Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor. Environ Sci Technol 45(10):4630–4636. doi:10.1021/es2005122CrossRef
45.
go back to reference Croteau MN, Misra SK, Luoma SN, Valsami-Jones E (2011) Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag. Environ Sci Technol 45(15):6600–6607. doi:10.1021/es200880cCrossRef Croteau MN, Misra SK, Luoma SN, Valsami-Jones E (2011) Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag. Environ Sci Technol 45(15):6600–6607. doi:10.1021/es200880cCrossRef
46.
go back to reference Pokhrel LR, Dubey B (2012) Potential impact of low-concentration silver nanoparticles on predator-prey interactions between predatory dragonfly nymphs and Daphnia magna as a prey. Environ Sci Technol 46(14):7755–7762. doi:10.1021/es204055cCrossRef Pokhrel LR, Dubey B (2012) Potential impact of low-concentration silver nanoparticles on predator-prey interactions between predatory dragonfly nymphs and Daphnia magna as a prey. Environ Sci Technol 46(14):7755–7762. doi:10.1021/es204055cCrossRef
Metadata
Title
Introduction
Authors
Sujuan Yu
Jingfu Liu
Copyright Year
2015
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46070-2_1