Skip to main content
Top
Published in: Acta Mechanica 10/2023

06-07-2023 | Original Paper

Inverse design of phononic crystals for anticipated wave propagation by integrating deep learning and semi-analytical approach

Authors: Sihao Han, Qiang Han, Tengjiao Jiang, Chunlei Li

Published in: Acta Mechanica | Issue 10/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Inversely designing and optimizing topological structures of phononic crystals that dominate extraordinary wave characteristics has become a research hotspot. In this study, a joint framework combining a data-driven deep learning model with the semi-analytical two-dimensional periodic spectral finite element method is applied to achieve the inverse design and optimization of topology. A convolutional neural network and a generative adversarial network are trained for inverse design. Meanwhile, the semi-analytical periodic approach is utilized to analyze the wave characteristics of two-dimensional phononic crystals. Through the proactive tuning of the band structures, the topologies of phononic crystals are inversely on-demand designed and optimized for the anticipated partial bandgap or complete bandgap, respectively, which revealed the unidirectional wave transmission or vibration isolation characteristics within the desired frequency segment. The unidirectional wave propagation and vibration isolation performance are validated through numerical simulations. This work holds the potential to benefit the design, optimization, and application of metamaterials.
Literature
1.
go back to reference Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022 (1993) Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022 (1993)
2.
go back to reference Wang, Y.F., Wang, Y.Z., Wu, B., Chen, W., Wang, Y.S.: Tunable and active phononic crystals and metamaterials. Appl. Mech. Rev. 72, 040801 (2020) Wang, Y.F., Wang, Y.Z., Wu, B., Chen, W., Wang, Y.S.: Tunable and active phononic crystals and metamaterials. Appl. Mech. Rev. 72, 040801 (2020)
3.
go back to reference Zhang, X., Liu, Z.: Negative refraction of acoustic waves in two-dimensional phononic crystals. Appl. Phys. Lett. 85, 341–343 (2004) Zhang, X., Liu, Z.: Negative refraction of acoustic waves in two-dimensional phononic crystals. Appl. Phys. Lett. 85, 341–343 (2004)
4.
go back to reference Lee, M.K., Ma, P.S., Lee, I.K., Kim, H.W., Kim, Y.Y.: Negative refraction experiments with guided shear-horizontal waves in thin phononic crystal plates. Appl. Phys. Lett. 98, 011909 (2011) Lee, M.K., Ma, P.S., Lee, I.K., Kim, H.W., Kim, Y.Y.: Negative refraction experiments with guided shear-horizontal waves in thin phononic crystal plates. Appl. Phys. Lett. 98, 011909 (2011)
5.
go back to reference Li, X.F., Ni, X., Feng, L., Lu, M.H., He, C., Chen, Y.F.: Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Phys. Rev. Lett. 106, 084301 (2011) Li, X.F., Ni, X., Feng, L., Lu, M.H., He, C., Chen, Y.F.: Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Phys. Rev. Lett. 106, 084301 (2011)
6.
go back to reference Li, Y., Shen, C., Xie, Y., Li, J., Wang, W., Cummer, S.A., Jing, Y.: Tunable asymmetric transmission via lossy acoustic metasurfaces. Phys. Rev. Lett. 119, 035501 (2017) Li, Y., Shen, C., Xie, Y., Li, J., Wang, W., Cummer, S.A., Jing, Y.: Tunable asymmetric transmission via lossy acoustic metasurfaces. Phys. Rev. Lett. 119, 035501 (2017)
7.
go back to reference Ma, N.F., Han, Q., Han, S.H., Li, C.L.: Hierarchical re-entrant honeycomb metamaterial for energy absorption and vibration insulation. Int. J. Mech. Sci. 250, 108307 (2023) Ma, N.F., Han, Q., Han, S.H., Li, C.L.: Hierarchical re-entrant honeycomb metamaterial for energy absorption and vibration insulation. Int. J. Mech. Sci. 250, 108307 (2023)
8.
go back to reference Jiang, T.J., Han, Q., Li, C.L.: Design and bandgap optimization of multi-scale composite origami-inspired metamaterials. Int. J. Mech. Sci. 248, 108233 (2023) Jiang, T.J., Han, Q., Li, C.L.: Design and bandgap optimization of multi-scale composite origami-inspired metamaterials. Int. J. Mech. Sci. 248, 108233 (2023)
9.
go back to reference Jiang, T.J., Han, Q., Li, C.L.: Topologically tunable local-resonant origami metamaterials for wave transmission and impact mitigation. J. Sound Vib. 548, 117548 (2023) Jiang, T.J., Han, Q., Li, C.L.: Topologically tunable local-resonant origami metamaterials for wave transmission and impact mitigation. J. Sound Vib. 548, 117548 (2023)
10.
go back to reference Xie, B., Wang, H.X., Zhang, X., Zhan, P., Jiang, J.H., Lu, M., Chen, Y.: Higher-order band topology. Nat. Rev. Phys. 3, 520–532 (2021) Xie, B., Wang, H.X., Zhang, X., Zhan, P., Jiang, J.H., Lu, M., Chen, Y.: Higher-order band topology. Nat. Rev. Phys. 3, 520–532 (2021)
11.
go back to reference Wang, P., Lu, L., Bertoldi, K.: Topological phononic crystals with one-way elastic edge waves. Phys. Rev. Lett. 115, 104302 (2015) Wang, P., Lu, L., Bertoldi, K.: Topological phononic crystals with one-way elastic edge waves. Phys. Rev. Lett. 115, 104302 (2015)
12.
go back to reference Huang, H., Chen, J., Huo, S.: Simultaneous topological Bragg and locally resonant edge modes of shear horizontal guided wave in one-dimensional structure. J. Phys. D Appl. Phys. 50, 275102 (2017) Huang, H., Chen, J., Huo, S.: Simultaneous topological Bragg and locally resonant edge modes of shear horizontal guided wave in one-dimensional structure. J. Phys. D Appl. Phys. 50, 275102 (2017)
13.
go back to reference Kulpe, J.A., Sabra, K.G., Leamy, M.J.: Bloch-wave expansion technique for predicting wave reflection and transmission in two-dimensional phononic crystals. J. Acoust. Soc. Am. 135, 1808–1819 (2014) Kulpe, J.A., Sabra, K.G., Leamy, M.J.: Bloch-wave expansion technique for predicting wave reflection and transmission in two-dimensional phononic crystals. J. Acoust. Soc. Am. 135, 1808–1819 (2014)
14.
go back to reference Palermo, A., Marzani, A.: Extended Bloch mode synthesis: ultrafast method for the computation of complex band structures in phononic media. Int. J. Solids Struct. 100, 29–40 (2016) Palermo, A., Marzani, A.: Extended Bloch mode synthesis: ultrafast method for the computation of complex band structures in phononic media. Int. J. Solids Struct. 100, 29–40 (2016)
15.
go back to reference Huang, G.L., Sun, C.T.: Band gaps in a multiresonator acoustic metamaterial. J. Vib. Acoust. 132 (2010) Huang, G.L., Sun, C.T.: Band gaps in a multiresonator acoustic metamaterial. J. Vib. Acoust. 132 (2010)
16.
go back to reference Yu, D., Liu, Y., Wang, G., Zhao, H., Qiu, J.: Flexural vibration band gaps in Timoshenko beams with locally resonant structures. J. Appl. Phys. 100, 124901 (2006) Yu, D., Liu, Y., Wang, G., Zhao, H., Qiu, J.: Flexural vibration band gaps in Timoshenko beams with locally resonant structures. J. Appl. Phys. 100, 124901 (2006)
17.
go back to reference Zhou, W., Lim, C.W.: Topological edge modeling and localization of protected interface modes in 1D phononic crystals for longitudinal and bending elastic waves. Int. J. Mech. Sci. 159, 359–372 (2019) Zhou, W., Lim, C.W.: Topological edge modeling and localization of protected interface modes in 1D phononic crystals for longitudinal and bending elastic waves. Int. J. Mech. Sci. 159, 359–372 (2019)
18.
go back to reference Li, Z.N., Yuan, B., Wang, Y.Z., Shui, G.S., Zhang, C., Wang, Y.S.: Diode behavior and nonreciprocal transmission in nonlinear elastic wave metamaterial. Mech. Mater. 133, 85–101 (2019) Li, Z.N., Yuan, B., Wang, Y.Z., Shui, G.S., Zhang, C., Wang, Y.S.: Diode behavior and nonreciprocal transmission in nonlinear elastic wave metamaterial. Mech. Mater. 133, 85–101 (2019)
19.
go back to reference Li, Z.N., Wang, Y.Z., Wang, Y.S.: Electro-mechanical coupling diode of elastic wave in nonlinear piezoelectric metamaterials. J. Acoust. Soc. Am. 150, 891–905 (2021) Li, Z.N., Wang, Y.Z., Wang, Y.S.: Electro-mechanical coupling diode of elastic wave in nonlinear piezoelectric metamaterials. J. Acoust. Soc. Am. 150, 891–905 (2021)
20.
go back to reference Dal Poggetto, V.F., Serpa, A.L.: Elastic wave band gaps in a three-dimensional periodic metamaterial using the plane wave expansion method. Int. J. Mech. Sci. 184, 105841 (2020) Dal Poggetto, V.F., Serpa, A.L.: Elastic wave band gaps in a three-dimensional periodic metamaterial using the plane wave expansion method. Int. J. Mech. Sci. 184, 105841 (2020)
21.
go back to reference Dal Poggetto, V.F., Serpa, A.L.: Flexural wave band gaps in a ternary periodic metamaterial plate using the plane wave expansion method. J. Sound Vib. 495, 115909 (2021) Dal Poggetto, V.F., Serpa, A.L.: Flexural wave band gaps in a ternary periodic metamaterial plate using the plane wave expansion method. J. Sound Vib. 495, 115909 (2021)
22.
go back to reference Dal Poggetto, V.F., de Franca Arruda, J.R.: Widening wave band gaps of periodic plates via shape optimization using spatial Fourier coefficients. Mech. Syst. Signal Pr. 147, 107098 (2021) Dal Poggetto, V.F., de Franca Arruda, J.R.: Widening wave band gaps of periodic plates via shape optimization using spatial Fourier coefficients. Mech. Syst. Signal Pr. 147, 107098 (2021)
23.
go back to reference Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: Wave propagation characterization and design of two-dimensional elastic chiral metacomposite. J. Sound Vib. 330, 2536–2553 (2011) Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: Wave propagation characterization and design of two-dimensional elastic chiral metacomposite. J. Sound Vib. 330, 2536–2553 (2011)
24.
go back to reference Veres, I.A., Berer, T., Matsuda, O.: Complex band structures of two dimensional phononic crystals: analysis by the finite element method. J. Appl. Phys. 114, 083519 (2013) Veres, I.A., Berer, T., Matsuda, O.: Complex band structures of two dimensional phononic crystals: analysis by the finite element method. J. Appl. Phys. 114, 083519 (2013)
25.
go back to reference Palermo, A., Marzani, A.: A reduced Bloch operator finite element method for fast calculation of elastic complex band structures. Int. J. Solids Struct. 191, 601–613 (2020) Palermo, A., Marzani, A.: A reduced Bloch operator finite element method for fast calculation of elastic complex band structures. Int. J. Solids Struct. 191, 601–613 (2020)
26.
go back to reference Wu, Z., Li, F.M., Zhang, C.: Band-gap analysis of a novel lattice with a hierarchical periodicity using the spectral element method. J. Sound Vib. 421, 246–260 (2018) Wu, Z., Li, F.M., Zhang, C.: Band-gap analysis of a novel lattice with a hierarchical periodicity using the spectral element method. J. Sound Vib. 421, 246–260 (2018)
27.
go back to reference Wu, Z., Li, F.M., Zhang, C.: Vibration band-gap properties of three-dimensional Kagome lattices using the spectral element method. J. Sound Vib. 341, 162–173 (2015) Wu, Z., Li, F.M., Zhang, C.: Vibration band-gap properties of three-dimensional Kagome lattices using the spectral element method. J. Sound Vib. 341, 162–173 (2015)
28.
go back to reference Wu, Z., Li, F.M.: Spectral element method and its application in analysing the vibration band gap properties of two-dimensional square lattices. J. Vib. Control 22, 710–721 (2016)MathSciNet Wu, Z., Li, F.M.: Spectral element method and its application in analysing the vibration band gap properties of two-dimensional square lattices. J. Vib. Control 22, 710–721 (2016)MathSciNet
29.
go back to reference Li, C.L., Jiang, T.J., Liu, S., Han, Q.: Dispersion and band gaps of elastic guided waves in the multi-scale periodic composite plates. Aerosp. Sci. Technol. 124, 107513 (2022) Li, C.L., Jiang, T.J., Liu, S., Han, Q.: Dispersion and band gaps of elastic guided waves in the multi-scale periodic composite plates. Aerosp. Sci. Technol. 124, 107513 (2022)
30.
go back to reference Han, S.H., Han, Q., Jiang, T.J., Li, C.L.: Complex dispersion relations and evanescent waves in periodic magneto-electro curved phononic crystal plates. Appl. Math. Model. 119, 373–390 (2023)MathSciNet Han, S.H., Han, Q., Jiang, T.J., Li, C.L.: Complex dispersion relations and evanescent waves in periodic magneto-electro curved phononic crystal plates. Appl. Math. Model. 119, 373–390 (2023)MathSciNet
31.
go back to reference Oudich, M., Gerard, N.J.R.K., Deng, Y., Jing, Y.: Tailoring Structure-Borne Sound through Bandgap Engineering in phononic crystals and metamaterials: a comprehensive review. Adv. Funct. Mater. 33, 2206309 (2023) Oudich, M., Gerard, N.J.R.K., Deng, Y., Jing, Y.: Tailoring Structure-Borne Sound through Bandgap Engineering in phononic crystals and metamaterials: a comprehensive review. Adv. Funct. Mater. 33, 2206309 (2023)
32.
go back to reference Xie, L.X., Xia, B.Z., Liu, J., Huang, G.L., Lei, J.R.: An improved fast plane wave expansion method for topology optimization of phononic crystals. Int. J. Mech. Sci. 120, 171–181 (2017) Xie, L.X., Xia, B.Z., Liu, J., Huang, G.L., Lei, J.R.: An improved fast plane wave expansion method for topology optimization of phononic crystals. Int. J. Mech. Sci. 120, 171–181 (2017)
33.
go back to reference Sharma, K.A., Kosta, M., Shmuel, G., Amir, O.: Gradient-based topology optimization of soft dielectrics as tunable phononic crystals. Compos. Struct. 280, 114846 (2022) Sharma, K.A., Kosta, M., Shmuel, G., Amir, O.: Gradient-based topology optimization of soft dielectrics as tunable phononic crystals. Compos. Struct. 280, 114846 (2022)
34.
go back to reference Dalklint, A., Wallin, M., Bertoldi, K., Tortorelli, D.: Tunable phononic bandgap materials designed via topology optimization. J. Mech. Phys. Solids 163, 104849 (2022)MathSciNet Dalklint, A., Wallin, M., Bertoldi, K., Tortorelli, D.: Tunable phononic bandgap materials designed via topology optimization. J. Mech. Phys. Solids 163, 104849 (2022)MathSciNet
35.
go back to reference Li, W., Meng, F., Chen, Y., Li, Y.F., Huang, X.: Topology optimization of photonic and phononic crystals and metamaterials: a review. Adv. Theor. Simul. 2, 1900017 (2019) Li, W., Meng, F., Chen, Y., Li, Y.F., Huang, X.: Topology optimization of photonic and phononic crystals and metamaterials: a review. Adv. Theor. Simul. 2, 1900017 (2019)
36.
go back to reference Chen, Y., Meng, F., Huang, X.: Creating acoustic topological insulators through topology optimization. Mech. Syst. Signal Pr. 146, 107054 (2021) Chen, Y., Meng, F., Huang, X.: Creating acoustic topological insulators through topology optimization. Mech. Syst. Signal Pr. 146, 107054 (2021)
37.
go back to reference Chen, Y., Meng, F., Zhu, J., Huang, X.: Inverse design of second-order photonic topological insulators in C3-symmetric lattices. Appl. Math. Model. 102, 194–206 (2022)MathSciNetMATH Chen, Y., Meng, F., Zhu, J., Huang, X.: Inverse design of second-order photonic topological insulators in C3-symmetric lattices. Appl. Math. Model. 102, 194–206 (2022)MathSciNetMATH
38.
go back to reference Dong, H.W., Zhao, S.D., Zhu, R., Wang, Y.S., Cheng, L., Zhang, C.: Customizing acoustic dirac cones and topological insulators in square lattices by topology optimization. J. Sound Vib. 493, 115687 (2021) Dong, H.W., Zhao, S.D., Zhu, R., Wang, Y.S., Cheng, L., Zhang, C.: Customizing acoustic dirac cones and topological insulators in square lattices by topology optimization. J. Sound Vib. 493, 115687 (2021)
39.
go back to reference Dong, H.W., Su, X.X., Wang, Y.S., Zhang, C.: Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Struct. Multidiscip. O 50, 593–604 (2014)MathSciNet Dong, H.W., Su, X.X., Wang, Y.S., Zhang, C.: Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Struct. Multidiscip. O 50, 593–604 (2014)MathSciNet
40.
go back to reference Dong, H.W., Zhao, S.D., Miao, X.B., Shen, C., Zhang, X., Zhao, Z., Zhang, C., Wang, Y.S., Cheng, L.: Customized broadband pentamode metamaterials by topology optimization. J. Mech. Phys. Solids 152, 104407 (2021)MathSciNet Dong, H.W., Zhao, S.D., Miao, X.B., Shen, C., Zhang, X., Zhao, Z., Zhang, C., Wang, Y.S., Cheng, L.: Customized broadband pentamode metamaterials by topology optimization. J. Mech. Phys. Solids 152, 104407 (2021)MathSciNet
41.
go back to reference Sanchez-Lengeling, B., Aspuru-Guzik, A.: Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360–365 (2018) Sanchez-Lengeling, B., Aspuru-Guzik, A.: Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360–365 (2018)
42.
43.
go back to reference Jin, Y., He, L., Wen, Z., Mortazavi, B., Guo, H., Torrent, D., Djafari-Rouhani, B., Rabczuk, T., Zhuang, X.Y., Li, Y.: Intelligent on-demand design of phononic metamaterials. Nanophotonics 11(3), 439–460 (2022) Jin, Y., He, L., Wen, Z., Mortazavi, B., Guo, H., Torrent, D., Djafari-Rouhani, B., Rabczuk, T., Zhuang, X.Y., Li, Y.: Intelligent on-demand design of phononic metamaterials. Nanophotonics 11(3), 439–460 (2022)
44.
go back to reference Kennedy, J., Lim, C.W.: Machine learning and deep learning in phononic crystals and metamaterials a review. Mater. Today Commun. 104606 (2022) Kennedy, J., Lim, C.W.: Machine learning and deep learning in phononic crystals and metamaterials a review. Mater. Today Commun. 104606 (2022)
45.
go back to reference Jiang, W., Zhu, Y., Yin, G., Lu, H., Xie, L., Yin, M.: Dispersion relation prediction and structure inverse design of elastic metamaterials via deep learning. Mater. Today Phys. 22, 100616 (2022) Jiang, W., Zhu, Y., Yin, G., Lu, H., Xie, L., Yin, M.: Dispersion relation prediction and structure inverse design of elastic metamaterials via deep learning. Mater. Today Phys. 22, 100616 (2022)
46.
go back to reference Liu, C.X., Yu, G.L.: Inverse design of locally resonant metabarrier by deep learning with a rule-based topology dataset. Comput. Method Appl. M. 394, 114925 (2022)MathSciNetMATH Liu, C.X., Yu, G.L.: Inverse design of locally resonant metabarrier by deep learning with a rule-based topology dataset. Comput. Method Appl. M. 394, 114925 (2022)MathSciNetMATH
47.
go back to reference Maghami, A., Hosseini, S.M.: IAutomated design of phononic crystals under thermoelastic wave propagation through deep reinforcement learning. Eng. Struct. 263, 114385 (2022) Maghami, A., Hosseini, S.M.: IAutomated design of phononic crystals under thermoelastic wave propagation through deep reinforcement learning. Eng. Struct. 263, 114385 (2022)
48.
go back to reference He, L., Wen, Z., Jin, Y., Torrent, D., Zhuang, X., Rabczuk, T.: Inverse design of topological metaplates for flexural waves with machine learning. Mater. Design. 199, 109390 (2021) He, L., Wen, Z., Jin, Y., Torrent, D., Zhuang, X., Rabczuk, T.: Inverse design of topological metaplates for flexural waves with machine learning. Mater. Design. 199, 109390 (2021)
49.
go back to reference Ma, W., Cheng, F., Xu, Y., Wen, Q., Liu, Y.: Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater. 31, 1901111 (2019) Ma, W., Cheng, F., Xu, Y., Wen, Q., Liu, Y.: Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater. 31, 1901111 (2019)
50.
go back to reference Han, S.H., Han, Q., Li, C.L.: Deep-learning-based inverse design of phononic crystals for anticipated wave attenuation. J. Appl. Phys. 132, 154901 (2022) Han, S.H., Han, Q., Li, C.L.: Deep-learning-based inverse design of phononic crystals for anticipated wave attenuation. J. Appl. Phys. 132, 154901 (2022)
51.
go back to reference Chen, C.T., Gu, G.X.: Generative deep neural networks for inverse materials design using backpropagation and active learning. Adv. Sci. 7, 1902607 (2020) Chen, C.T., Gu, G.X.: Generative deep neural networks for inverse materials design using backpropagation and active learning. Adv. Sci. 7, 1902607 (2020)
52.
go back to reference Ahmed, W.W., Farhat, M., Zhang, X., Wu, Y.: Deterministic and probabilistic deep learning models for inverse design of broadband acoustic cloak. Phys. Rev. Res. 3, 013142 (2021) Ahmed, W.W., Farhat, M., Zhang, X., Wu, Y.: Deterministic and probabilistic deep learning models for inverse design of broadband acoustic cloak. Phys. Rev. Res. 3, 013142 (2021)
53.
go back to reference Challapalli, A., Patel, D., Li, G.: Inverse machine learning framework for optimizing lightweight metamaterials. Mater. Design. 208, 109937 (2021) Challapalli, A., Patel, D., Li, G.: Inverse machine learning framework for optimizing lightweight metamaterials. Mater. Design. 208, 109937 (2021)
54.
go back to reference Li, X., Ning, S., Liu, Z., Yan, Z., Luo, C., Zhuang, Z.: Designing phononic crystal with anticipated band gap through a deep learning based data-driven method. Comput. Method Appl. M 361, 112737 (2020)MathSciNetMATH Li, X., Ning, S., Liu, Z., Yan, Z., Luo, C., Zhuang, Z.: Designing phononic crystal with anticipated band gap through a deep learning based data-driven method. Comput. Method Appl. M 361, 112737 (2020)MathSciNetMATH
55.
go back to reference Schattschneider, D.: The plane symmetry groups: their recognition and notation. Am. Math. Mon. 85, 439–450 (1978)MathSciNetMATH Schattschneider, D.: The plane symmetry groups: their recognition and notation. Am. Math. Mon. 85, 439–450 (1978)MathSciNetMATH
56.
go back to reference Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63, 139–144 (2020) Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63, 139–144 (2020)
57.
go back to reference Isola, P., Zhu, J. Y., Zhou, T., Efros, A. A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1125–1134 (2017) Isola, P., Zhu, J. Y., Zhou, T., Efros, A. A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1125–1134 (2017)
58.
go back to reference Amari, S.: Backpropagation and stochastic gradient descent method. Neurocomputing 5, 185–196 (1993)MATH Amari, S.: Backpropagation and stochastic gradient descent method. Neurocomputing 5, 185–196 (1993)MATH
60.
go back to reference Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A. A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2536–2544 (2016) Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A. A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2536–2544 (2016)
Metadata
Title
Inverse design of phononic crystals for anticipated wave propagation by integrating deep learning and semi-analytical approach
Authors
Sihao Han
Qiang Han
Tengjiao Jiang
Chunlei Li
Publication date
06-07-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 10/2023
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03634-y

Other articles of this Issue 10/2023

Acta Mechanica 10/2023 Go to the issue

Premium Partners