Skip to main content
Top
Published in: Journal of Applied and Industrial Mathematics 1/2023

01-03-2023

Inverse Problem for the Wave Equation with a Polynomial Nonlinearity

Authors: V. G. Romanov, T. V. Bugueva

Published in: Journal of Applied and Industrial Mathematics | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For the wave equation containing a nonlinearity in the form of an \( n \)th order polynomial, we study the problem of determining the coefficients of the polynomial depending on the variable \( x\in \mathbb {R}^3 \). We consider plane waves that propagate in a homogeneous medium in the direction of a unit vector \( \boldsymbol \nu \) with a sharp front and incident on an inhomogeneity localized inside a certain ball \( B(R) \). It is assumed that the solutions of the problems can be measured at the points of the boundary of this ball at the instants of time close to the arrival of the wavefront for all possible values of the vector \( \boldsymbol \nu \). It is shown that the solution of the inverse problem is reduced to a series of X-ray tomography problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Kurylev, M. Lassas, and G. Uhlmann, “Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations,” Invent. Math. 212, 781–857 (2018). [math.DG], September 20, 2017. Y. Kurylev, M. Lassas, and G. Uhlmann, “Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations,” Invent. Math. 212, 781–857 (2018). [math.DG], September 20, 2017.
2.
go back to reference M. Lassas, G. Uhlmann, and Y. Wang, “Inverse problems for semilinear wave equations on Lorentzian manifolds,” Commun. Math. Phys. 360, 555–609 (2018). [math.AP] June 20, 2016. M. Lassas, G. Uhlmann, and Y. Wang, “Inverse problems for semilinear wave equations on Lorentzian manifolds,” Commun. Math. Phys. 360, 555–609 (2018). [math.AP] June 20, 2016.
3.
go back to reference M. Lassas, “Inverse problems for linear and non-linear hyperbolic equations,” Proc. Int. Congr. Math. 3, 3739–3760 (2018).MATH M. Lassas, “Inverse problems for linear and non-linear hyperbolic equations,” Proc. Int. Congr. Math. 3, 3739–3760 (2018).MATH
4.
go back to reference Y. Wang and T. Zhou, “Inverse problems for quadratic derivative nonlinear wave equations,” Commun. Partial Differ. Equ. 44 (11), 1140–1158 (2019).MathSciNetCrossRefMATH Y. Wang and T. Zhou, “Inverse problems for quadratic derivative nonlinear wave equations,” Commun. Partial Differ. Equ. 44 (11), 1140–1158 (2019).MathSciNetCrossRefMATH
5.
go back to reference P. Hintz and G. Uhlmann, “Reconstruction of Lorentzian manifolds from boundary light observation sets,” Int. Math. Res. Notices 22, 6949–6987 (2019). [math.DG] May 27, 2020. P. Hintz and G. Uhlmann, “Reconstruction of Lorentzian manifolds from boundary light observation sets,” Int. Math. Res. Notices 22, 6949–6987 (2019). [math.DG] May 27, 2020.
6.
go back to reference A. S. Barreto, “Interactions of semilinear progressing waves in two or more space dimensions,” Inverse Probl. Imaging 14 (6), 1057–1105 (2020). [math.AP] January 29, 2020. A. S. Barreto, “Interactions of semilinear progressing waves in two or more space dimensions,” Inverse Probl. Imaging 14 (6), 1057–1105 (2020). [math.AP] January 29, 2020.
7.
go back to reference G. Uhlmann and J. Zhai, “On an inverse boundary value problem for a nonlinear elastic wave equation,” J. Math. Pures Appl. 153, 114–136 (2021).MathSciNetCrossRefMATH G. Uhlmann and J. Zhai, “On an inverse boundary value problem for a nonlinear elastic wave equation,” J. Math. Pures Appl. 153, 114–136 (2021).MathSciNetCrossRefMATH
8.
go back to reference A. S. Barreto and P. Stefanov, “Recovery of a general nonlinearity in the semilinear wave equation,” [math.AP] July 18, 2021. A. S. Barreto and P. Stefanov, “Recovery of a general nonlinearity in the semilinear wave equation,” [math.AP] July 18, 2021.
9.
go back to reference P. Hintz, G. Uhlmann, and J. Zhai, “The Dirichlet-to-Neumann map for a semilinear wave equation on Lorentzian manifolds” (2021). [math.AP] March 15, 2021. P. Hintz, G. Uhlmann, and J. Zhai, “The Dirichlet-to-Neumann map for a semilinear wave equation on Lorentzian manifolds” (2021). [math.AP] March 15, 2021.
11.
go back to reference V. G. Romanov and T. V. Bugueva, “Inverse problem for the nonlinear wave equation,” Sib. Zh. Ind. Mat. 25 (2), 83–100 (2022) [in Russian].MathSciNet V. G. Romanov and T. V. Bugueva, “Inverse problem for the nonlinear wave equation,” Sib. Zh. Ind. Mat. 25 (2), 83–100 (2022) [in Russian].MathSciNet
12.
go back to reference V. G. Romanov and T. V. Bugueva, “The problem of determining the coefficient multiplying the nonlinear term in a quasilinear wave equation,” Sib. Zh. Ind. Mat. 25 (3), 154–169 (2022) [in Russian]. V. G. Romanov and T. V. Bugueva, “The problem of determining the coefficient multiplying the nonlinear term in a quasilinear wave equation,” Sib. Zh. Ind. Mat. 25 (3), 154–169 (2022) [in Russian].
13.
go back to reference V. G. Romanov, “An inverse problem for a semilinear wave equation,” Dokl. Ross. Akad. Nauk. Mat. Inf. Protsessy Upr. 504 (1), 36–41 (2022) [Dokl. Math. 105 (3), 166–170 (2022)].MathSciNetCrossRefMATH V. G. Romanov, “An inverse problem for a semilinear wave equation,” Dokl. Ross. Akad. Nauk. Mat. Inf. Protsessy Upr. 504 (1), 36–41 (2022) [Dokl. Math. 105 (3), 166–170 (2022)].MathSciNetCrossRefMATH
14.
go back to reference F. Natterer, The Mathematics of Computerized Tomography (Wiley, New York, 1986; Mir, Moscow, 1990).CrossRefMATH F. Natterer, The Mathematics of Computerized Tomography (Wiley, New York, 1986; Mir, Moscow, 1990).CrossRefMATH
15.
go back to reference M. E. Davison, “A singular value decomposition for the Radon transform in \( n \)-dimensional Euclidean space,” Numer. Funct. Anal. Optim. 3, 321–340 (1981).MathSciNetCrossRefMATH M. E. Davison, “A singular value decomposition for the Radon transform in \( n \)-dimensional Euclidean space,” Numer. Funct. Anal. Optim. 3, 321–340 (1981).MathSciNetCrossRefMATH
16.
go back to reference V. V. Pikalov and N. G. Preobrazhenskii, “Computer-aided tomography and physical experiment,” Usp. Fiz. Nauk 141 (3), 469–498 (1983) [Phys.–Usp. 26 (11), 974–990 (1983)]. V. V. Pikalov and N. G. Preobrazhenskii, “Computer-aided tomography and physical experiment,” Usp. Fiz. Nauk 141 (3), 469–498 (1983) [Phys.–Usp. 26 (11), 974–990 (1983)].
17.
go back to reference S. R. Deans, The Radon Transform and Some of Its Applications (Wiley, New York, 1983).MATH S. R. Deans, The Radon Transform and Some of Its Applications (Wiley, New York, 1983).MATH
18.
go back to reference A. K. Louis, “Orthogonal function series expansions and the null space of the Radon transform,” SIAM J. Math. Anal. 15 (3), 621–633 (1984).MathSciNetCrossRefMATH A. K. Louis, “Orthogonal function series expansions and the null space of the Radon transform,” SIAM J. Math. Anal. 15 (3), 621–633 (1984).MathSciNetCrossRefMATH
20.
go back to reference A. N. Tikhonov, V. Ya. Arsenin, and A. A. Timonov, Mathematical Problems of Computer Tomography (Nauka, Moscow, 1987) [in Russian].MATH A. N. Tikhonov, V. Ya. Arsenin, and A. A. Timonov, Mathematical Problems of Computer Tomography (Nauka, Moscow, 1987) [in Russian].MATH
21.
go back to reference A. G. Michette and C. J. Buckley, X-Ray Science and Technology (Taylor & Francis, New York, 1993). A. G. Michette and C. J. Buckley, X-Ray Science and Technology (Taylor & Francis, New York, 1993).
22.
go back to reference V. M. Boiko, A. M. Orishich, A. A. Pavlov, and V. V. Pikalov, Methods of Optical Diagnostics in Aerophysical Experiment (Izd. NGU, Novosibirsk, 2009) [in Russian]. V. M. Boiko, A. M. Orishich, A. A. Pavlov, and V. V. Pikalov, Methods of Optical Diagnostics in Aerophysical Experiment (Izd. NGU, Novosibirsk, 2009) [in Russian].
23.
go back to reference E. Yu. Derevtsov, A. V. Efimov, A. K. Louis, and T. Schuster, “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography,” J. Inverse Ill-Posed Probl. 19 (4–5), 689–715 (2011). https://doi.org/10.1515/jiip.2011.047 E. Yu. Derevtsov, A. V. Efimov, A. K. Louis, and T. Schuster, “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography,” J. Inverse Ill-Posed Probl. 19 (4–5), 689–715 (2011). https://​doi.​org/​10.​1515/​jiip.​2011.​047
24.
go back to reference D. S. Anikonov, V. G. Nazarov, and I. V. Prokhorov, “An integrodifferential indicator for the problem of single beam tomography,” Sib. Zh. Ind. Mat. 17 (2), 3–10 (2014) [J. Appl. Ind. Math. 8 (3), 301–306 (2014)].MathSciNetCrossRefMATH D. S. Anikonov, V. G. Nazarov, and I. V. Prokhorov, “An integrodifferential indicator for the problem of single beam tomography,” Sib. Zh. Ind. Mat. 17 (2), 3–10 (2014) [J. Appl. Ind. Math. 8 (3), 301–306 (2014)].MathSciNetCrossRefMATH
26.
go back to reference L. Borg, J. Frikel, J. S. Orgensen, and E. T. Quinto, “Analyzing reconstruction artifacts from arbitrary incomplete X-ray CT data.” [math.FA] June 26, 2018. L. Borg, J. Frikel, J. S. Orgensen, and E. T. Quinto, “Analyzing reconstruction artifacts from arbitrary incomplete X-ray CT data.” [math.FA] June 26, 2018.
27.
go back to reference Y. Xu, H. Yu, A. Sushmit, Q. Lyu, G. Wang, Y. Li, X. Cao, and J. S. Maltz, “Cardiac CT motion artifact grading via semi-automatic labeling and vessel tracking using synthetic image-augmented training data,” J. X-Ray Sci. Technol. 30 (3), 433–445 (2022). https://doi.org/10.3233/XST-211109 Y. Xu, H. Yu, A. Sushmit, Q. Lyu, G. Wang, Y. Li, X. Cao, and J. S. Maltz, “Cardiac CT motion artifact grading via semi-automatic labeling and vessel tracking using synthetic image-augmented training data,” J. X-Ray Sci. Technol. 30 (3), 433–445 (2022). https://​doi.​org/​10.​3233/​XST-211109
28.
go back to reference V. A. Sharafutdinov, “On determining an optical body located in a homogeneous medium based on its images,” in Mathematical Methods for Solving Direct and Inverse Problems of Geophysics (Izd. VTs SO AN SSSR, Novosibirsk, 1981), 123–148 [in Russian]. V. A. Sharafutdinov, “On determining an optical body located in a homogeneous medium based on its images,” in Mathematical Methods for Solving Direct and Inverse Problems of Geophysics (Izd. VTs SO AN SSSR, Novosibirsk, 1981), 123–148 [in Russian].
Metadata
Title
Inverse Problem for the Wave Equation with a Polynomial Nonlinearity
Authors
V. G. Romanov
T. V. Bugueva
Publication date
01-03-2023
Publisher
Pleiades Publishing
Published in
Journal of Applied and Industrial Mathematics / Issue 1/2023
Print ISSN: 1990-4789
Electronic ISSN: 1990-4797
DOI
https://doi.org/10.1134/S1990478923010180

Other articles of this Issue 1/2023

Journal of Applied and Industrial Mathematics 1/2023 Go to the issue

Premium Partners