Skip to main content
Top

2015 | OriginalPaper | Chapter

Inverse Scattering

Authors : David Colton, Rainer Kress

Published in: Handbook of Mathematical Methods in Imaging

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We give a survey of the mathematical basis of inverse scattering theory, concentrating on the case of time-harmonic acoustic waves. After an introduction and historical remarks, we give an outline of the direct scattering problem. This is then followed by sections on uniqueness results in inverse scattering theory and iterative and decomposition methods to reconstruct the shape and material properties of the scattering object. We conclude by discussing qualitative methods in inverse scattering theory, in particular the linear sampling method and its use in obtaining lower bounds on the constitutive parameters of the scattering object.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alessandrini, G., Rondi, L.: Determining a sound–soft polyhedral scatterer by a single far–field measurement. Proc. Am. Math. Soc. 133, 1685–1691 (2005)CrossRefMATHMathSciNet Alessandrini, G., Rondi, L.: Determining a sound–soft polyhedral scatterer by a single far–field measurement. Proc. Am. Math. Soc. 133, 1685–1691 (2005)CrossRefMATHMathSciNet
4.
go back to reference Bukhgeim, A.: Recovering a potential from Cauchy data in the two-dimensional case. J. Inverse Ill–Posed Prob. 16, 19–33 (2008) Bukhgeim, A.: Recovering a potential from Cauchy data in the two-dimensional case. J. Inverse Ill–Posed Prob. 16, 19–33 (2008)
5.
go back to reference Cakoni, F., Colton, D.: A uniqueness theorem for an inverse electromagnetic scattering problem in inhomogeneous anisotropic media. Proc. Edinb. Math. Soc. 46, 293–314 (2003)CrossRefMATHMathSciNet Cakoni, F., Colton, D.: A uniqueness theorem for an inverse electromagnetic scattering problem in inhomogeneous anisotropic media. Proc. Edinb. Math. Soc. 46, 293–314 (2003)CrossRefMATHMathSciNet
6.
go back to reference Cakoni, F., Colton, D.: The determination of the surface impedance of a partially coated obstacle from far field data. SIAM J. Appl. Math. 64, 709–723 (2004)CrossRefMATHMathSciNet Cakoni, F., Colton, D.: The determination of the surface impedance of a partially coated obstacle from far field data. SIAM J. Appl. Math. 64, 709–723 (2004)CrossRefMATHMathSciNet
7.
go back to reference Cakoni, F., Colton, D.: Qualitative Methods in Inverse Scattering Theory. Springer, Berlin (2006)MATH Cakoni, F., Colton, D.: Qualitative Methods in Inverse Scattering Theory. Springer, Berlin (2006)MATH
8.
go back to reference Cakoni, F., Colton, D., Haddar, H.: The computation of lower bounds for the norm of the index of refraction in anisotropic media from far field data. J. Integral Eqn. Appl. 21, 203–227 (2009)CrossRefMATHMathSciNet Cakoni, F., Colton, D., Haddar, H.: The computation of lower bounds for the norm of the index of refraction in anisotropic media from far field data. J. Integral Eqn. Appl. 21, 203–227 (2009)CrossRefMATHMathSciNet
9.
go back to reference Cakoni, F., Colton, D., Haddar, H.: The interior transmission problem for regions with cavities. SIAM J. Math. Anal. 42, 145–162 (2010)CrossRefMATHMathSciNet Cakoni, F., Colton, D., Haddar, H.: The interior transmission problem for regions with cavities. SIAM J. Math. Anal. 42, 145–162 (2010)CrossRefMATHMathSciNet
10.
go back to reference Cakoni, F., Colton, D., Haddar, H.: On the determination of Dirichlet and transmission eigenvalues from far field data. Comput. Rend. Math. 348, 379–383 (2010)CrossRefMATHMathSciNet Cakoni, F., Colton, D., Haddar, H.: On the determination of Dirichlet and transmission eigenvalues from far field data. Comput. Rend. Math. 348, 379–383 (2010)CrossRefMATHMathSciNet
11.
go back to reference Cakoni, F., Colton, D., Monk, P.: The electromagnetic inverse scattering problem for partly coated Lipschitz domains. Proc. R. Soc. Edinb. 134A, 661–682 (2004)CrossRefMathSciNet Cakoni, F., Colton, D., Monk, P.: The electromagnetic inverse scattering problem for partly coated Lipschitz domains. Proc. R. Soc. Edinb. 134A, 661–682 (2004)CrossRefMathSciNet
12.
go back to reference Cakoni, F., Colton, D., Monk, P.: The Linear Sampling Method in Inverse Electromagnetic Scattering. SIAM. Cakoni, F., Colton, D., Monk, P.: The Linear Sampling Method in Inverse Electromagnetic Scattering. SIAM.
13.
go back to reference Cakoni, F., Fares, M., Haddar, H.: Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects. Inverse Prob. 22, 845–867 (2006)CrossRefMATHMathSciNet Cakoni, F., Fares, M., Haddar, H.: Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects. Inverse Prob. 22, 845–867 (2006)CrossRefMATHMathSciNet
14.
go back to reference Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42, 237–255 (2010)CrossRefMATHMathSciNet Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42, 237–255 (2010)CrossRefMATHMathSciNet
15.
go back to reference Cakoni, F., Haddar, H.: A variational approach for the solution of the electro-magnetic interior transmission problem for anisotropic media. Inverse Prob. Imaging 1, 443–456 (2007)CrossRefMATHMathSciNet Cakoni, F., Haddar, H.: A variational approach for the solution of the electro-magnetic interior transmission problem for anisotropic media. Inverse Prob. Imaging 1, 443–456 (2007)CrossRefMATHMathSciNet
16.
go back to reference Cakoni, F., Haddar, H.: On the existence of transmission eigenvalues in an inhomogeneous medium. Appl. Anal. 89, 29–47 (2010)CrossRefMathSciNet Cakoni, F., Haddar, H.: On the existence of transmission eigenvalues in an inhomogeneous medium. Appl. Anal. 89, 29–47 (2010)CrossRefMathSciNet
17.
go back to reference Colton, D., Haddar, H.: An application of the reciprocity gap functional to inverse scattering theory. Inverse Prob. 21, 383–398 (2005)CrossRefMATHMathSciNet Colton, D., Haddar, H.: An application of the reciprocity gap functional to inverse scattering theory. Inverse Prob. 21, 383–398 (2005)CrossRefMATHMathSciNet
18.
go back to reference Colton, D., Haddar, H., Monk, P.: The linear sampling method for solving the electromagnetic inverse scattering problem. SIAM J. Sci. Comput. 24, 719–731 (2002)CrossRefMATHMathSciNet Colton, D., Haddar, H., Monk, P.: The linear sampling method for solving the electromagnetic inverse scattering problem. SIAM J. Sci. Comput. 24, 719–731 (2002)CrossRefMATHMathSciNet
19.
go back to reference Colton, D., Kirsch, A.: A simple method for solving inverse scattering problems in the resonance region. Inverse Prob. 12, 383–393 (1996)CrossRefMATHMathSciNet Colton, D., Kirsch, A.: A simple method for solving inverse scattering problems in the resonance region. Inverse Prob. 12, 383–393 (1996)CrossRefMATHMathSciNet
20.
go back to reference Colton, D., Kirsch, A., Päivärinta, L.: Far field patterns for acoustic waves in an inhomogeneous medium. SIAM J. Math. Anal. 20, 1472–1483 (1989)CrossRefMATHMathSciNet Colton, D., Kirsch, A., Päivärinta, L.: Far field patterns for acoustic waves in an inhomogeneous medium. SIAM J. Math. Anal. 20, 1472–1483 (1989)CrossRefMATHMathSciNet
21.
go back to reference Colton, D., Kress, R.: Eigenvalues of the far field operator for the Helmholtz equation in an absorbing medium. SIAM J. Appl. Math. 55, 1724–1735 (1995)CrossRefMATHMathSciNet Colton, D., Kress, R.: Eigenvalues of the far field operator for the Helmholtz equation in an absorbing medium. SIAM J. Appl. Math. 55, 1724–1735 (1995)CrossRefMATHMathSciNet
22.
go back to reference Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, Berlin (1998)CrossRefMATH Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, Berlin (1998)CrossRefMATH
23.
go back to reference Colton, D., Kress, R.: On the denseness of Herglotz wave functions and electromagnetic Herglotz pairs in Sobolev spaces. Math. Methods Appl. Sci. 24, 1289–1303 (2001)CrossRefMATHMathSciNet Colton, D., Kress, R.: On the denseness of Herglotz wave functions and electromagnetic Herglotz pairs in Sobolev spaces. Math. Methods Appl. Sci. 24, 1289–1303 (2001)CrossRefMATHMathSciNet
24.
go back to reference Colton, D., Monk, P.: A novel method for solving the inverse scattering problem for time harmonic acoustic waves in the resonance region II. SIAM J. Appl. Math. 26, 506–523 (1986)CrossRefMathSciNet Colton, D., Monk, P.: A novel method for solving the inverse scattering problem for time harmonic acoustic waves in the resonance region II. SIAM J. Appl. Math. 26, 506–523 (1986)CrossRefMathSciNet
25.
go back to reference Colton, D., Monk, P.: The inverse scattering problem for acoustic waves in an inhomogeneous medium. Quart. J. Mech. Appl. Math. 41, 97–125 (1988)CrossRefMATHMathSciNet Colton, D., Monk, P.: The inverse scattering problem for acoustic waves in an inhomogeneous medium. Quart. J. Mech. Appl. Math. 41, 97–125 (1988)CrossRefMATHMathSciNet
26.
go back to reference Colton, D., Monk, P.: Target identification of coated objects. IEEE Trans. Antennas Prop. 54, 1232–1242 (2006)CrossRef Colton, D., Monk, P.: Target identification of coated objects. IEEE Trans. Antennas Prop. 54, 1232–1242 (2006)CrossRef
27.
go back to reference Colton, D., Päivärinta, L.: The uniqueness of a solution to an inverse scattering problem for electromagnetic waves. Arch. Ration. Mech. Anal. 119, 59–70 (1992)CrossRefMATH Colton, D., Päivärinta, L.: The uniqueness of a solution to an inverse scattering problem for electromagnetic waves. Arch. Ration. Mech. Anal. 119, 59–70 (1992)CrossRefMATH
28.
29.
go back to reference Colton, D., Piana, M., Potthast, R.: A simple method using Mozorov’s discrepancy principle for solving inverse scattering problems. Inverse Prob. 13, 1477–1493 (1997)CrossRefMATHMathSciNet Colton, D., Piana, M., Potthast, R.: A simple method using Mozorov’s discrepancy principle for solving inverse scattering problems. Inverse Prob. 13, 1477–1493 (1997)CrossRefMATHMathSciNet
30.
go back to reference Colton, D., Sleeman, B.: An approximation property of importance in inverse scattering theory. Proc. Edinburgh. Math. Soc. 44, 449–454 (2001)CrossRefMATHMathSciNet Colton, D., Sleeman, B.: An approximation property of importance in inverse scattering theory. Proc. Edinburgh. Math. Soc. 44, 449–454 (2001)CrossRefMATHMathSciNet
31.
go back to reference Farhat, C., Tezaur, R., Djellouli, R.: On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method. Inverse Prob. 18, 1229–1246 (2002)CrossRefMATHMathSciNet Farhat, C., Tezaur, R., Djellouli, R.: On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method. Inverse Prob. 18, 1229–1246 (2002)CrossRefMATHMathSciNet
32.
go back to reference Gintides, D.: Local uniqueness for the inverse scattering problem in acoustics via the Faber–Krahn inequality. Inverse Prob. 21, 1195–1205 (2005)CrossRefMATHMathSciNet Gintides, D.: Local uniqueness for the inverse scattering problem in acoustics via the Faber–Krahn inequality. Inverse Prob. 21, 1195–1205 (2005)CrossRefMATHMathSciNet
33.
go back to reference Gylys–Colwell, F.: An inverse problem for the Helmholtz equation. Inverse Prob. 12, 139–156 (1996) Gylys–Colwell, F.: An inverse problem for the Helmholtz equation. Inverse Prob. 12, 139–156 (1996)
34.
go back to reference Haddar, H., Monk, P.: The linear sampling method for solving the electromagnetic inverse medium problem. Inverse Prob. 18, 891–906 (2002)CrossRefMATHMathSciNet Haddar, H., Monk, P.: The linear sampling method for solving the electromagnetic inverse medium problem. Inverse Prob. 18, 891–906 (2002)CrossRefMATHMathSciNet
35.
go back to reference Hähner, P.: A periodic Faddeev–type solution operator. J. Diff. Eqn. 128, 300–308 (1996)CrossRefMATH Hähner, P.: A periodic Faddeev–type solution operator. J. Diff. Eqn. 128, 300–308 (1996)CrossRefMATH
36.
37.
go back to reference Hähner, P.: Electromagnetic wave scattering. In: Pike, R., Sabatier, P. (eds.) Scattering. Academic, New York (2002) Hähner, P.: Electromagnetic wave scattering. In: Pike, R., Sabatier, P. (eds.) Scattering. Academic, New York (2002)
38.
go back to reference Harbrecht, H., Hohage, T.: Fast methods for three-dimensional inverse obstacle scattering problems. J. Integral Eqn. Appl. 19, 237–260 (2007)CrossRefMATHMathSciNet Harbrecht, H., Hohage, T.: Fast methods for three-dimensional inverse obstacle scattering problems. J. Integral Eqn. Appl. 19, 237–260 (2007)CrossRefMATHMathSciNet
39.
go back to reference Hohage, T.: Iterative methods in inverse obstacle scattering: regularization theory of linear and nonlinear exponentially ill-posed problems. Dissertation, Linz (1999) Hohage, T.: Iterative methods in inverse obstacle scattering: regularization theory of linear and nonlinear exponentially ill-posed problems. Dissertation, Linz (1999)
40.
go back to reference Isakov, V.: On the uniqueness in the inverse transmission scattering problem. Commun. Partial Diff. Eqns. 15, 1565–1587 (1988)CrossRefMathSciNet Isakov, V.: On the uniqueness in the inverse transmission scattering problem. Commun. Partial Diff. Eqns. 15, 1565–1587 (1988)CrossRefMathSciNet
41.
go back to reference Isakov, V.: Inverse Problems for Partial Differential Equations. Springer, Berlin (1996) Isakov, V.: Inverse Problems for Partial Differential Equations. Springer, Berlin (1996)
42.
go back to reference Ivanyshyn, O.: Nonlinear boundary integral equations in inverse scattering. Dissertation, Gäottingen (2007) Ivanyshyn, O.: Nonlinear boundary integral equations in inverse scattering. Dissertation, Gäottingen (2007)
43.
go back to reference Ivanyshyn, O., Kress, R.: Nonlinear integral equations in inverse obstacle scattering. In: Fotiatis M (ed) Mathematical Methods in Scattering Theory and Biomedical Engineering. World Scientific, Singapore, pp. 39–50 (2006) Ivanyshyn, O., Kress, R.: Nonlinear integral equations in inverse obstacle scattering. In: Fotiatis M (ed) Mathematical Methods in Scattering Theory and Biomedical Engineering. World Scientific, Singapore, pp. 39–50 (2006)
44.
45.
go back to reference Johansson, T., Sleeman, B.: Reconstruction of an acoustically sound-soft obstacle from one incident field and the far field pattern. IMA J. Appl. Math. 72, 96–112 (2007)CrossRefMATHMathSciNet Johansson, T., Sleeman, B.: Reconstruction of an acoustically sound-soft obstacle from one incident field and the far field pattern. IMA J. Appl. Math. 72, 96–112 (2007)CrossRefMATHMathSciNet
46.
go back to reference Jones, D.S.: Acoustic and Electromagnetic Waves. Clarendon, Oxford (1986) Jones, D.S.: Acoustic and Electromagnetic Waves. Clarendon, Oxford (1986)
48.
go back to reference Kirsch, A.: Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Prob. 14, 1489–1512 (1998)CrossRefMATHMathSciNet Kirsch, A.: Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Prob. 14, 1489–1512 (1998)CrossRefMATHMathSciNet
49.
go back to reference Kirsch, A.: Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory. Inverse Prob. 15, 413–429 (1999)CrossRefMATHMathSciNet Kirsch, A.: Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory. Inverse Prob. 15, 413–429 (1999)CrossRefMATHMathSciNet
50.
go back to reference Kirsch, A.: An integral equation approach and the interior transmission problem for Maxwell’s equations. Inverse Prob. Imaging 1, 159–179 (2007)CrossRefMATHMathSciNet Kirsch, A.: An integral equation approach and the interior transmission problem for Maxwell’s equations. Inverse Prob. Imaging 1, 159–179 (2007)CrossRefMATHMathSciNet
52.
go back to reference Kirsch, A., Grinberg, N.: The Factorization Method for Inverse Problems. Oxford University Press, Oxford (2008)MATH Kirsch, A., Grinberg, N.: The Factorization Method for Inverse Problems. Oxford University Press, Oxford (2008)MATH
53.
go back to reference Kirsch, A., Kress, R.: An optimization method in inverse acoustic scattering. In: Brebbia, C.A. et al. (eds.) Boundary Elements IX. Fluid Flow and Potential Applications, vol. 3. Springer, Berlin (1987) Kirsch, A., Kress, R.: An optimization method in inverse acoustic scattering. In: Brebbia, C.A. et al. (eds.) Boundary Elements IX. Fluid Flow and Potential Applications, vol. 3. Springer, Berlin (1987)
55.
go back to reference Kleinman, R., van den Berg, P.: A modified gradient method for two dimensional problems in tomography. J. Comput. Appl. Math. 42, 17–35 (1992)CrossRefMATHMathSciNet Kleinman, R., van den Berg, P.: A modified gradient method for two dimensional problems in tomography. J. Comput. Appl. Math. 42, 17–35 (1992)CrossRefMATHMathSciNet
56.
go back to reference Kress, R.: Electromagnetic waves scattering. In: Pike, R., Sabatier, P. (eds.) Scattering. Academic, New York (2002) Kress, R.: Electromagnetic waves scattering. In: Pike, R., Sabatier, P. (eds.) Scattering. Academic, New York (2002)
57.
go back to reference Kress, R.: Newton’s Method for inverse obstacle scattering meets the method of least squares. Inverse Prob. 19, 91–104 (2003)CrossRefMathSciNet Kress, R.: Newton’s Method for inverse obstacle scattering meets the method of least squares. Inverse Prob. 19, 91–104 (2003)CrossRefMathSciNet
59.
go back to reference Kress, R., Rundell, W.: Nonlinear integral equations and the iterative solution for an inverse boundary value problem. Inverse Prob. 21, 1207–1223 (2005)CrossRefMATHMathSciNet Kress, R., Rundell, W.: Nonlinear integral equations and the iterative solution for an inverse boundary value problem. Inverse Prob. 21, 1207–1223 (2005)CrossRefMATHMathSciNet
60.
go back to reference Langenberg, K.: Applied inverse problems for acoustic, electromagnetic and elastic wave scattering. In: Sabatier, P. (ed.) Basic Methods of Tomography and Inverse Problems. Adam Hilger, Bristol (1987) Langenberg, K.: Applied inverse problems for acoustic, electromagnetic and elastic wave scattering. In: Sabatier, P. (ed.) Basic Methods of Tomography and Inverse Problems. Adam Hilger, Bristol (1987)
61.
go back to reference Lax, P.D., Phillips, R.S.: Scattering Theory. Academic, New York (1967)MATH Lax, P.D., Phillips, R.S.: Scattering Theory. Academic, New York (1967)MATH
62.
go back to reference Liu, H.: A global uniqueness for formally determined electromagnetic obstacle scattering. Inverse Prob. 24, 035018 (2008)CrossRef Liu, H.: A global uniqueness for formally determined electromagnetic obstacle scattering. Inverse Prob. 24, 035018 (2008)CrossRef
63.
go back to reference Liu, H., Zou, J.: Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers. Inverse Prob. 22, 515–524 (2006)CrossRefMATHMathSciNet Liu, H., Zou, J.: Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers. Inverse Prob. 22, 515–524 (2006)CrossRefMATHMathSciNet
64.
go back to reference McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)MATH McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)MATH
65.
go back to reference Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)CrossRefMATH Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)CrossRefMATH
66.
go back to reference Morse, P.M., Ingard, K.U.: Linear acoustic theory. In: Faugge, S. (ed.) Encyclopedia of Physics. Springer, Berlin (1961) Morse, P.M., Ingard, K.U.: Linear acoustic theory. In: Faugge, S. (ed.) Encyclopedia of Physics. Springer, Berlin (1961)
67.
go back to reference Mäuller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin (1969)CrossRef Mäuller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin (1969)CrossRef
69.
70.
go back to reference Novikov, R.: Multidimensional inverse spectral problems for the equation \(-\Delta \psi +\) \(\left (v(x)-\right.\) \(\left.Eu(x)\right )\psi = 0\). Trans. Funct. Anal. Appl. 22, 263–272 (1988) Novikov, R.: Multidimensional inverse spectral problems for the equation \(-\Delta \psi +\) \(\left (v(x)-\right.\) \(\left.Eu(x)\right )\psi = 0\). Trans. Funct. Anal. Appl. 22, 263–272 (1988)
71.
72.
go back to reference Ola, P., Somersalo, E.: Electromagnetic inverse problems and generalized Sommerfeld potentials. SIAM J. Appl. Math. 56, 1129–1145 (1996)CrossRefMATHMathSciNet Ola, P., Somersalo, E.: Electromagnetic inverse problems and generalized Sommerfeld potentials. SIAM J. Appl. Math. 56, 1129–1145 (1996)CrossRefMATHMathSciNet
74.
75.
go back to reference Potthast, R.: Fréchet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Prob. 10, 431–447 (1994)CrossRefMATHMathSciNet Potthast, R.: Fréchet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Prob. 10, 431–447 (1994)CrossRefMATHMathSciNet
76.
go back to reference Potthast, R.: Point-Sources and Multipoles in Inverse Scattering Theory. Chapman and Hall, London (2001)CrossRefMATH Potthast, R.: Point-Sources and Multipoles in Inverse Scattering Theory. Chapman and Hall, London (2001)CrossRefMATH
77.
79.
go back to reference Ramm, A.: Recovery of the potential from fixed energy scattering data. Inverse Prob. 4, 877–886 (1988)CrossRefMATH Ramm, A.: Recovery of the potential from fixed energy scattering data. Inverse Prob. 4, 877–886 (1988)CrossRefMATH
80.
go back to reference Rjasanow, S., Steinbach, O.: The Fast Solution of Boundary Integral Equations. Springer, Berlin (2007)MATH Rjasanow, S., Steinbach, O.: The Fast Solution of Boundary Integral Equations. Springer, Berlin (2007)MATH
81.
go back to reference Roger, R.: Newton Kantorovich algorithm applied to an electromagnetic inverse problem. IEEE Trans. Antennas Prop. 29, 232–238 (1981)CrossRefMATHMathSciNet Roger, R.: Newton Kantorovich algorithm applied to an electromagnetic inverse problem. IEEE Trans. Antennas Prop. 29, 232–238 (1981)CrossRefMATHMathSciNet
82.
go back to reference Rondi, L.: Unique determination of non-smooth sound-soft scatterers by finitely many far-field measurements. Indiana Univ. Math. J. 52, 1631–1662 (2003)CrossRefMATHMathSciNet Rondi, L.: Unique determination of non-smooth sound-soft scatterers by finitely many far-field measurements. Indiana Univ. Math. J. 52, 1631–1662 (2003)CrossRefMATHMathSciNet
83.
go back to reference Rynne, B.P., Sleeman, B.D.: The interior transmission problem and inverse scattering from inhomogeneous media. SIAM J. Math. Anal. 22, 1755–1762 (1991)CrossRefMATHMathSciNet Rynne, B.P., Sleeman, B.D.: The interior transmission problem and inverse scattering from inhomogeneous media. SIAM J. Math. Anal. 22, 1755–1762 (1991)CrossRefMATHMathSciNet
85.
go back to reference Serranho, P.: A hybrid method for inverse obstacle scattering problems. Dissertation, Gäottingen (2007) Serranho, P.: A hybrid method for inverse obstacle scattering problems. Dissertation, Gäottingen (2007)
87.
go back to reference Stefanov, P., Uhlmann, G.: Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering. Proc. Am. Math. Soc. 132, 1351–1354 (2003)CrossRefMathSciNet Stefanov, P., Uhlmann, G.: Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering. Proc. Am. Math. Soc. 132, 1351–1354 (2003)CrossRefMathSciNet
88.
89.
go back to reference van den Berg, R., Kleinman, R.: A contrast source inversion method. Inverse Prob. 13, 1607–1620 (1997)CrossRefMATH van den Berg, R., Kleinman, R.: A contrast source inversion method. Inverse Prob. 13, 1607–1620 (1997)CrossRefMATH
Metadata
Title
Inverse Scattering
Authors
David Colton
Rainer Kress
Copyright Year
2015
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-0790-8_48

Premium Partner