Skip to main content
Top

2019 | OriginalPaper | Chapter

Investigation of Cell Interactions on Biomimetic Lipid Membranes

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cell membrane is one of the most exciting biointerfaces by which the cell, the smallest living unit, orchestrates its communication/interaction with its surrounding, vital for its survival. Design of suitable model systems with similar functionalities could prove themselves as useful platforms to focus on membrane-mediated cellular processes such as cell–cell and cell–surface interactions. Biomimetic lipid membranes are able to sustain the structure and fluidity of the cell membrane, and could mimic its dynamic complexity. In this chapter, an overview of cell interactions on biomimetic lipid membranes is given with a focus on supported lipid bilayers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.B. Harvey Lodish, S. Lawrence Zipursky, P. Matsudaira, D. Baltimore, J. Darnell, Biomembranes and cell architecture, in Molecular Cell Biology (4th edition) 2001, vol. 1084, (Elsevier BV: Freeman & Co, New York, NY, 2000), pp. 126–128 A.B. Harvey Lodish, S. Lawrence Zipursky, P. Matsudaira, D. Baltimore, J. Darnell, Biomembranes and cell architecture, in Molecular Cell Biology (4th edition) 2001, vol. 1084, (Elsevier BV: Freeman & Co, New York, NY, 2000), pp. 126–128
2.
go back to reference J.U.A. Clare O’Connor, J. Fairman, Essentials of Cell Biology (NPG Education, Cambridge, MA, 2010) J.U.A. Clare O’Connor, J. Fairman, Essentials of Cell Biology (NPG Education, Cambridge, MA, 2010)
3.
go back to reference R.P. Richter, J.L.K. Him, A. Brisson, Supported lipid membranes. Mater. Today 6(11), 32–37 (2003)CrossRef R.P. Richter, J.L.K. Him, A. Brisson, Supported lipid membranes. Mater. Today 6(11), 32–37 (2003)CrossRef
4.
go back to reference A. Kilic, F.N. Kok, Biomimetic lipid bilayers on solid surfaces: models for biological interactions. Surf. Innov. 4(3), 141–157 (2016)CrossRef A. Kilic, F.N. Kok, Biomimetic lipid bilayers on solid surfaces: models for biological interactions. Surf. Innov. 4(3), 141–157 (2016)CrossRef
5.
go back to reference G.J. Hardy, R. Nayak, S. Zauscher, Model cell membranes: techniques to form complex biomimetic supported lipid bilayers via vesicle fusion. Curr. Opin. Colloid Interface Sci. 18(5), 448–458 (2013)CrossRef G.J. Hardy, R. Nayak, S. Zauscher, Model cell membranes: techniques to form complex biomimetic supported lipid bilayers via vesicle fusion. Curr. Opin. Colloid Interface Sci. 18(5), 448–458 (2013)CrossRef
6.
go back to reference A. Kilic et al., The effect of thiolated phospholipids on formation of supported lipid bilayers on gold substrates investigated by surface-sensitive methods. Colloids Surf. B Biointerfaces 160, 117–125 (2017)CrossRef A. Kilic et al., The effect of thiolated phospholipids on formation of supported lipid bilayers on gold substrates investigated by surface-sensitive methods. Colloids Surf. B Biointerfaces 160, 117–125 (2017)CrossRef
7.
go back to reference N.J. Cho et al., Employing an amphipathic viral peptide to create a lipid bilayer on Au and TiO2. J. Am. Chem. Soc. 129(33), 10050–10051 (2007)CrossRef N.J. Cho et al., Employing an amphipathic viral peptide to create a lipid bilayer on Au and TiO2. J. Am. Chem. Soc. 129(33), 10050–10051 (2007)CrossRef
8.
go back to reference E. Reimhult et al., A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2. Langmuir 22(7), 3313–3319 (2006)CrossRef E. Reimhult et al., A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2. Langmuir 22(7), 3313–3319 (2006)CrossRef
9.
go back to reference V. Kiessling et al., Supported Lipid Bilayers: Development and Applications in Chemical Biology (Wiley Encyclopedia of Chemical Biology, Hoboken, 2008)CrossRef V. Kiessling et al., Supported Lipid Bilayers: Development and Applications in Chemical Biology (Wiley Encyclopedia of Chemical Biology, Hoboken, 2008)CrossRef
10.
go back to reference J.T. Groves, L.K. Mahal, C.R. Bertozzi, Control of cell adhesion and growth with micropatterned supported lipid membranes. Langmuir 17(17), 5129–5133 (2001)CrossRef J.T. Groves, L.K. Mahal, C.R. Bertozzi, Control of cell adhesion and growth with micropatterned supported lipid membranes. Langmuir 17(17), 5129–5133 (2001)CrossRef
11.
go back to reference S. Svedhem et al., In situ peptide-modified supported lipid bilayers for controlled cell attachment. Langmuir 19(17), 6730–6736 (2003)CrossRef S. Svedhem et al., In situ peptide-modified supported lipid bilayers for controlled cell attachment. Langmuir 19(17), 6730–6736 (2003)CrossRef
12.
go back to reference S.E. Choi et al., Positively charged supported lipid bilayer formation on gold surfaces for neuronal cell culture. Biointerphases 11(2), 021003 (2016)CrossRef S.E. Choi et al., Positively charged supported lipid bilayer formation on gold surfaces for neuronal cell culture. Biointerphases 11(2), 021003 (2016)CrossRef
13.
go back to reference J. van Weerd, M. Karperien, P. Jonkheijm, Supported lipid bilayers for the generation of dynamic cell-material interfaces. Adv. Healthc. Mater. 4(18), 2743–2779 (2015)CrossRef J. van Weerd, M. Karperien, P. Jonkheijm, Supported lipid bilayers for the generation of dynamic cell-material interfaces. Adv. Healthc. Mater. 4(18), 2743–2779 (2015)CrossRef
14.
go back to reference M. Andreasson-Ochsner et al., Single cell 3-D platform to study ligand mobility in cell-cell contact. Lab Chip 11(17), 2876–2883 (2011)CrossRef M. Andreasson-Ochsner et al., Single cell 3-D platform to study ligand mobility in cell-cell contact. Lab Chip 11(17), 2876–2883 (2011)CrossRef
15.
go back to reference R. Ghosh Moulick et al., Reconstitution of fusion proteins in supported lipid bilayers for the study of cell surface receptor-ligand interactions in cell-cell contact. Langmuir 32(14), 3462–3469 (2016)CrossRef R. Ghosh Moulick et al., Reconstitution of fusion proteins in supported lipid bilayers for the study of cell surface receptor-ligand interactions in cell-cell contact. Langmuir 32(14), 3462–3469 (2016)CrossRef
16.
go back to reference R. Berat et al., Peptide-presenting two-dimensional protein matrix on supported lipid bilayers: an efficient platform for cell adhesion. Biointerphases 2(4), 165–172 (2007)CrossRef R. Berat et al., Peptide-presenting two-dimensional protein matrix on supported lipid bilayers: an efficient platform for cell adhesion. Biointerphases 2(4), 165–172 (2007)CrossRef
17.
go back to reference S. Vafaei, S.R. Tabaei, N.-J. Cho, Optimizing the performance of supported lipid bilayers as cell culture platforms based on extracellular matrix functionalization. ACS Omega 2(6), 2395–2404 (2017)CrossRef S. Vafaei, S.R. Tabaei, N.-J. Cho, Optimizing the performance of supported lipid bilayers as cell culture platforms based on extracellular matrix functionalization. ACS Omega 2(6), 2395–2404 (2017)CrossRef
18.
go back to reference A.S. Andersson et al., Cell adhesion on supported lipid bilayers. J. Biomed. Mater. Res. A 64(4), 622–629 (2003)CrossRef A.S. Andersson et al., Cell adhesion on supported lipid bilayers. J. Biomed. Mater. Res. A 64(4), 622–629 (2003)CrossRef
19.
go back to reference L. Kam, S.G. Boxer, Cell adhesion to protein-micropatterned-supported lipid bilayer membranes. J. Biomed. Mater. Res. 55(4), 487–495 (2001)CrossRef L. Kam, S.G. Boxer, Cell adhesion to protein-micropatterned-supported lipid bilayer membranes. J. Biomed. Mater. Res. 55(4), 487–495 (2001)CrossRef
20.
go back to reference D. Thid et al., Supported phospholipid bilayers as a platform for neural progenitor cell culture. J. Biomed. Mater. Res. A 84(4), 940–953 (2008)CrossRef D. Thid et al., Supported phospholipid bilayers as a platform for neural progenitor cell culture. J. Biomed. Mater. Res. A 84(4), 940–953 (2008)CrossRef
21.
go back to reference D. Afanasenkau, A. Offenhausser, Positively charged supported lipid bilayers as a biomimetic platform for neuronal cell culture. Langmuir 28(37), 13387–13394 (2012)CrossRef D. Afanasenkau, A. Offenhausser, Positively charged supported lipid bilayers as a biomimetic platform for neuronal cell culture. Langmuir 28(37), 13387–13394 (2012)CrossRef
22.
go back to reference C. Satriano et al., Ferritin-supported lipid bilayers for triggering the endothelial cell response. Colloids Surf. B Biointerfaces 149, 48–55 (2017)CrossRef C. Satriano et al., Ferritin-supported lipid bilayers for triggering the endothelial cell response. Colloids Surf. B Biointerfaces 149, 48–55 (2017)CrossRef
23.
go back to reference B. Ananthanarayanan et al., Neural stem cell adhesion and proliferation on phospholipid bilayers functionalized with RGD peptides. Biomaterials 31(33), 8706–8715 (2010)CrossRef B. Ananthanarayanan et al., Neural stem cell adhesion and proliferation on phospholipid bilayers functionalized with RGD peptides. Biomaterials 31(33), 8706–8715 (2010)CrossRef
24.
go back to reference D. Stroumpoulis et al., Cell adhesion and growth to peptide-patterned supported lipid membranes. Langmuir 23(7), 3849–3856 (2007)CrossRef D. Stroumpoulis et al., Cell adhesion and growth to peptide-patterned supported lipid membranes. Langmuir 23(7), 3849–3856 (2007)CrossRef
25.
go back to reference C.J. Huang et al., Type I collagen-functionalized supported lipid bilayer as a cell culture platform. Biomacromolecules 11(5), 1231–1240 (2010)CrossRef C.J. Huang et al., Type I collagen-functionalized supported lipid bilayer as a cell culture platform. Biomacromolecules 11(5), 1231–1240 (2010)CrossRef
26.
go back to reference P.Y. Tseng, Y.C. Chang, Tethered fibronectin liposomes on supported lipid bilayers as a prepackaged controlled-release platform for cell-based assays. Biomacromolecules 13(8), 2254–2262 (2012)CrossRef P.Y. Tseng, Y.C. Chang, Tethered fibronectin liposomes on supported lipid bilayers as a prepackaged controlled-release platform for cell-based assays. Biomacromolecules 13(8), 2254–2262 (2012)CrossRef
27.
go back to reference B. Li, J. Chen, J.H. Wang, RGD peptide-conjugated poly(dimethylsiloxane) promotes adhesion, proliferation, and collagen secretion of human fibroblasts. J. Biomed. Mater. Res. A 79(4), 989–998 (2006)CrossRef B. Li, J. Chen, J.H. Wang, RGD peptide-conjugated poly(dimethylsiloxane) promotes adhesion, proliferation, and collagen secretion of human fibroblasts. J. Biomed. Mater. Res. A 79(4), 989–998 (2006)CrossRef
28.
go back to reference L. Sandrin et al., Cell adhesion through clustered ligand on fluid supported lipid bilayers. Org. Biomol. Chem. 8(7), 1531–1534 (2010)CrossRef L. Sandrin et al., Cell adhesion through clustered ligand on fluid supported lipid bilayers. Org. Biomol. Chem. 8(7), 1531–1534 (2010)CrossRef
29.
go back to reference X. Zhu et al., Cell adhesion on supported lipid bilayers functionalized with RGD peptides monitored by using a quartz crystal microbalance with dissipation. Colloids Surf. B Biointerfaces 116, 459–464 (2014)CrossRef X. Zhu et al., Cell adhesion on supported lipid bilayers functionalized with RGD peptides monitored by using a quartz crystal microbalance with dissipation. Colloids Surf. B Biointerfaces 116, 459–464 (2014)CrossRef
30.
go back to reference B. Reiss et al., Adhesion kinetics of functionalized vesicles and mammalian cells: a comparative study†. Langmuir 19(5), 1816–1823 (2003)CrossRef B. Reiss et al., Adhesion kinetics of functionalized vesicles and mammalian cells: a comparative study†. Langmuir 19(5), 1816–1823 (2003)CrossRef
31.
go back to reference A.C. Da-Silva et al., Acoustic detection of cell adhesion on a quartz crystal microbalance. Biotechnol. Appl. Biochem. 59(6), 411–419 (2012)CrossRef A.C. Da-Silva et al., Acoustic detection of cell adhesion on a quartz crystal microbalance. Biotechnol. Appl. Biochem. 59(6), 411–419 (2012)CrossRef
32.
go back to reference A. Kilic, F.N. Kok, Quartz crystal microbalance with dissipation as a biosensing platform to evaluate cell-surface interactions of osteoblast cells. Biointerphases 13(1), 011001 (2017)CrossRef A. Kilic, F.N. Kok, Quartz crystal microbalance with dissipation as a biosensing platform to evaluate cell-surface interactions of osteoblast cells. Biointerphases 13(1), 011001 (2017)CrossRef
33.
go back to reference S.K. Akiyama, K.M. Yamada, The interaction of plasma fibronectin with fibroblastic cells in suspension. J. Biol. Chem. 260(7), 4492–4500 (1985) S.K. Akiyama, K.M. Yamada, The interaction of plasma fibronectin with fibroblastic cells in suspension. J. Biol. Chem. 260(7), 4492–4500 (1985)
34.
go back to reference L.A. Lautscham et al., Biomembrane-mimicking lipid bilayer system as a mechanically tunable cell substrate. Biomaterials 35(10), 3198–3207 (2014)CrossRef L.A. Lautscham et al., Biomembrane-mimicking lipid bilayer system as a mechanically tunable cell substrate. Biomaterials 35(10), 3198–3207 (2014)CrossRef
35.
go back to reference R. Glazier, K. Salaita, Supported lipid bilayer platforms to probe cell mechanobiology. Biochim. Biophys. Acta 1859(9 Pt A), 1465–1482 (2017)CrossRef R. Glazier, K. Salaita, Supported lipid bilayer platforms to probe cell mechanobiology. Biochim. Biophys. Acta 1859(9 Pt A), 1465–1482 (2017)CrossRef
36.
go back to reference S.F. Evans et al., Solid-supported lipid bilayers to drive stem cell fate and tissue architecture using periosteum derived progenitor cells. Biomaterials 34(8), 1878–1887 (2013)CrossRef S.F. Evans et al., Solid-supported lipid bilayers to drive stem cell fate and tissue architecture using periosteum derived progenitor cells. Biomaterials 34(8), 1878–1887 (2013)CrossRef
37.
go back to reference J. van Weerd et al., A microfluidic device with continuous ligand gradients in supported lipid bilayers to probe effects of ligand surface density and solution shear stress on pathogen adhesion. Adv. Mater. Interfaces 3(9), 1600055 (2016)CrossRef J. van Weerd et al., A microfluidic device with continuous ligand gradients in supported lipid bilayers to probe effects of ligand surface density and solution shear stress on pathogen adhesion. Adv. Mater. Interfaces 3(9), 1600055 (2016)CrossRef
Metadata
Title
Investigation of Cell Interactions on Biomimetic Lipid Membranes
Authors
Abdulhalim Kılıç
Fatma Neşe Kök
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-11596-8_6

Premium Partners