Skip to main content
Top
Published in: International Journal of Material Forming 2/2017

01-10-2015 | Original Research

Investigation of deep drawing concept of multi-point forming process in terms of prevalent defects

Authors: Behrooz Zareh-Desari, Behnam Davoodi, Ali Vedaei-Sabegh

Published in: International Journal of Material Forming | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Multi-point forming is a novel flexible process that is economically suitable for both rapid prototyping and batch production of sheet metal parts. This technique is established based on altering rigid dies by matrices of adjustable punch elements. In this paper, the basic principle of this technique is implemented on deep drawing process. A reconfigurable die was constructed to investigate the multi-point deep drawing process. AA 2024-O Aluminum alloy was designated as test material. The formed specimens were evaluated in terms of dimpling defect, rupture, thickness distribution and dimensional accuracy. The onset of rupture was predicted by integrating the forming limit diagram of employed material with finite element Code. The predicted results were in a reasonable agreement with the experimental tests. It was found that for complete elimination of dimpling defect and acquiring maximum drawing depth, the proper allocation of elastic layer parameters such as thickness and hardness was crucial. The conducted investigations indicated that, in general, dimensional accuracy of formed parts was acceptable. However, for areas with sharp changes in geometry such as corners and side walls, deviation from desired geometry was evident. This phenomenon was remarkably dominant for manufactured parts utilizing softer elastic layer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Vihtonen L, Puzik A, Katajarinne T (2008) Comparing two robot assisted incremental forming methods: incremental forming by pressing and incremental hammering. Int J Mater Form 1(1):1207–1210CrossRef Vihtonen L, Puzik A, Katajarinne T (2008) Comparing two robot assisted incremental forming methods: incremental forming by pressing and incremental hammering. Int J Mater Form 1(1):1207–1210CrossRef
2.
go back to reference Scherer D, Yang Z, Hoffmann H (2010) Driving–a flexible manufacturing method for individualized sheet metal products. Int J Mater Form 3(1):955–958CrossRef Scherer D, Yang Z, Hoffmann H (2010) Driving–a flexible manufacturing method for individualized sheet metal products. Int J Mater Form 3(1):955–958CrossRef
3.
go back to reference Arfa H, Bahloul R, BelHadjSalah H (2013) Finite element modelling and experimental investigation of single point incremental forming process of aluminum sheets: influence of process parameters on punch force monitoring and on mechanical and geometrical quality of parts. Int J Mater Form 6(4):483–510CrossRef Arfa H, Bahloul R, BelHadjSalah H (2013) Finite element modelling and experimental investigation of single point incremental forming process of aluminum sheets: influence of process parameters on punch force monitoring and on mechanical and geometrical quality of parts. Int J Mater Form 6(4):483–510CrossRef
4.
go back to reference Voswinckel H, Bambach M, Hirt G (2014) Improving geometrical accuracy for flanging by incremental sheet metal forming. Int J Material Form 1–9 Voswinckel H, Bambach M, Hirt G (2014) Improving geometrical accuracy for flanging by incremental sheet metal forming. Int J Material Form 1–9
5.
go back to reference Li M, Liu Y, Su S, Li G (1999) Multi-point forming: a flexible manufacturing method for a 3-d surface sheet. J Mater Process Technol 87(1):277–280CrossRef Li M, Liu Y, Su S, Li G (1999) Multi-point forming: a flexible manufacturing method for a 3-d surface sheet. J Mater Process Technol 87(1):277–280CrossRef
6.
go back to reference Li M-Z, Cai Z-Y, Sui Z, Yan Q (2002) Multi-point forming technology for sheet metal. J Mater Process Technol 129(1):333–338CrossRef Li M-Z, Cai Z-Y, Sui Z, Yan Q (2002) Multi-point forming technology for sheet metal. J Mater Process Technol 129(1):333–338CrossRef
7.
go back to reference Chen J-J, Li M-Z, Liu W, Wang C-T (2005) Sectional multipoint forming technology for large-size sheet metal. Int J Adv Manuf Technol 25(9–10):935–939CrossRef Chen J-J, Li M-Z, Liu W, Wang C-T (2005) Sectional multipoint forming technology for large-size sheet metal. Int J Adv Manuf Technol 25(9–10):935–939CrossRef
8.
go back to reference Li M-Z, Cai Z-Y, Liu C-G (2007) Flexible manufacturing of sheet metal parts based on digitized-die. Robot Comput Integr Manuf 23(1):107–115CrossRef Li M-Z, Cai Z-Y, Liu C-G (2007) Flexible manufacturing of sheet metal parts based on digitized-die. Robot Comput Integr Manuf 23(1):107–115CrossRef
9.
go back to reference Chen J-J, Liu W, Li M-Z, Wang C-T (2006) Digital manufacture of titanium prosthesis for cranioplasty. Int J Adv Manuf Technol 27(11–12):1148–1152CrossRef Chen J-J, Liu W, Li M-Z, Wang C-T (2006) Digital manufacture of titanium prosthesis for cranioplasty. Int J Adv Manuf Technol 27(11–12):1148–1152CrossRef
10.
go back to reference Zhang Q, Dean T, Wang Z (2006) Numerical simulation of deformation in multi-point sandwich forming. Int J Mach Tools Manuf 46(7):699–707CrossRef Zhang Q, Dean T, Wang Z (2006) Numerical simulation of deformation in multi-point sandwich forming. Int J Mach Tools Manuf 46(7):699–707CrossRef
11.
go back to reference Zhang Q, Wang Z, Dean T (2008) The mechanics of multi-point sandwich forming. Int J Mach Tools Manuf 48(12):1495–1503CrossRef Zhang Q, Wang Z, Dean T (2008) The mechanics of multi-point sandwich forming. Int J Mach Tools Manuf 48(12):1495–1503CrossRef
12.
go back to reference Yaşar M, Korkmaz Z, Gavas M (2007) Forming sheet metals by means of multi-point deep drawing method. Mater Des 28(10):2647–2653CrossRef Yaşar M, Korkmaz Z, Gavas M (2007) Forming sheet metals by means of multi-point deep drawing method. Mater Des 28(10):2647–2653CrossRef
13.
go back to reference Paunoiu V, Cekan P, Gavan E, Nicoara D (2008) Numerical simulations in reconfigurable multipoint forming. Int J Mater Form 1(1):181–184CrossRef Paunoiu V, Cekan P, Gavan E, Nicoara D (2008) Numerical simulations in reconfigurable multipoint forming. Int J Mater Form 1(1):181–184CrossRef
14.
go back to reference Yan A, Klappka I (2008) Springback in stretch forming process of aeronautic panel production by finite element simulation. Int J Mater Form 1(1):201–204CrossRef Yan A, Klappka I (2008) Springback in stretch forming process of aeronautic panel production by finite element simulation. Int J Mater Form 1(1):201–204CrossRef
15.
go back to reference Cai Z-Y, Wang S-H, Xu X-D, Li M-Z (2009) Numerical simulation for the multi-point stretch forming process of sheet metal. J Mater Process Technol 209(1):396–407CrossRef Cai Z-Y, Wang S-H, Xu X-D, Li M-Z (2009) Numerical simulation for the multi-point stretch forming process of sheet metal. J Mater Process Technol 209(1):396–407CrossRef
16.
go back to reference Liu Q, Lu C, Fu W, Tieu K, Li M, Gong X (2012) Optimization of cushion conditions in micro multi-point sheet forming. J Mater Process Technol 212(3):672–677CrossRef Liu Q, Lu C, Fu W, Tieu K, Li M, Gong X (2012) Optimization of cushion conditions in micro multi-point sheet forming. J Mater Process Technol 212(3):672–677CrossRef
17.
go back to reference Sala G (2001) A numerical and experimental approach to optimise sheet stamping technologies: part II—aluminium alloys rubber-forming. Mater Des 22(4):299–315CrossRef Sala G (2001) A numerical and experimental approach to optimise sheet stamping technologies: part II—aluminium alloys rubber-forming. Mater Des 22(4):299–315CrossRef
18.
go back to reference Barlat F, Lian K (1989) Plastic behavior and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions. Int J Plast 5(1):51–66CrossRef Barlat F, Lian K (1989) Plastic behavior and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions. Int J Plast 5(1):51–66CrossRef
19.
go back to reference Ozturk F, Lee D (2004) Analysis of forming limits using ductile fracture criteria. J Mater Process Technol 147(3):397–404CrossRef Ozturk F, Lee D (2004) Analysis of forming limits using ductile fracture criteria. J Mater Process Technol 147(3):397–404CrossRef
20.
go back to reference Zhang Q, Wang Z, Dean T (2007) Multi-point sandwich forming of a spherical sector with tool-shape compensation. J Mater Process Technol 194(1):74–80CrossRef Zhang Q, Wang Z, Dean T (2007) Multi-point sandwich forming of a spherical sector with tool-shape compensation. J Mater Process Technol 194(1):74–80CrossRef
21.
go back to reference Davoodi B, Zareh-Desari B (2014) Assessment of forming parameters influencing spring-back in multi-point forming process: a comprehensive experimental and numerical study. Mater Des 59:103–114CrossRef Davoodi B, Zareh-Desari B (2014) Assessment of forming parameters influencing spring-back in multi-point forming process: a comprehensive experimental and numerical study. Mater Des 59:103–114CrossRef
22.
go back to reference Ren L, Zhang S, Palumbo G, Sorgente D, Tricarico L (2009) Numerical simulation on warm deep drawing of magnesium alloy AZ31 sheets. Mater Sci Eng A 499(1):40–44CrossRef Ren L, Zhang S, Palumbo G, Sorgente D, Tricarico L (2009) Numerical simulation on warm deep drawing of magnesium alloy AZ31 sheets. Mater Sci Eng A 499(1):40–44CrossRef
23.
go back to reference Essa K, Hartley P (2011) An assessment of various process strategies for improving precision in single point incremental forming. Int J Mater Form 4(4):401–412CrossRef Essa K, Hartley P (2011) An assessment of various process strategies for improving precision in single point incremental forming. Int J Mater Form 4(4):401–412CrossRef
24.
go back to reference Ambrogio G, Filice L (2012) On the use of Back-drawing Incremental Forming (BIF) to improve geometrical accuracy in sheet metal parts. Int J Mater Form 5(4):269–274CrossRef Ambrogio G, Filice L (2012) On the use of Back-drawing Incremental Forming (BIF) to improve geometrical accuracy in sheet metal parts. Int J Mater Form 5(4):269–274CrossRef
Metadata
Title
Investigation of deep drawing concept of multi-point forming process in terms of prevalent defects
Authors
Behrooz Zareh-Desari
Behnam Davoodi
Ali Vedaei-Sabegh
Publication date
01-10-2015
Publisher
Springer Paris
Published in
International Journal of Material Forming / Issue 2/2017
Print ISSN: 1960-6206
Electronic ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-015-1268-1

Other articles of this Issue 2/2017

International Journal of Material Forming 2/2017 Go to the issue

Premium Partners