Skip to main content
Top

2020 | OriginalPaper | Chapter

13. Investigation of the Unsteady Aerodynamics of Insect Flight: The Use of Immersed Boundary Method

Authors : Srinidhi Nagarada Gadde, Y. Sudhakar, S. Vengadesan

Published in: Immersed Boundary Method

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The study of insect flight is fascinating not only due to its underlying unsteady aerodynamic principles but also for its practical applications in the development of micro-aerial vehicles. The flapping motion of insect wings involves large translational and rotational components. Consequently, the conventional body-fitted moving-mesh computational methods face mesh tangling issues that require expensive re-meshing strategies. In addition, accomplishing such simulations involve considerable human intervention. Immersed boundary methods are ideally suited to simulate insect flight as the flow around the wings are simulated in a fixed Cartesian grid; due to which, neither mesh moving strategies nor re-meshing is required. However, the enforcement of boundary conditions on flapping wings is challenging and is achieved by an appropriate force field. In this chapter, we use the continuous forcing immersed boundary method to study the unsteady aerodynamics of an idealized flapping motion of a hovering insect. Flapping flight in the inclined stroke planes are studied to understand the associated flow dynamics. Furthermore, the effect of phase difference on the aerodynamics of insects with tandem wings (e.g., dragonfly) and the presence of ground are also considered. Results are analyzed in terms of the cycle variation of forces, vortex dynamics, and coherent structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alexander DE (1984) Unusual phase relationships between the forewings and hindwings in flying dragonflies. J Exp Biol 109(1):379–383 Alexander DE (1984) Unusual phase relationships between the forewings and hindwings in flying dragonflies. J Exp Biol 109(1):379–383
go back to reference Altshuler DL, Dickson WB, Vance JT, Roberts SP, Dickinson MH (2005) Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight. Proc Natl Acad Sci 102:18213–18218CrossRef Altshuler DL, Dickson WB, Vance JT, Roberts SP, Dickinson MH (2005) Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight. Proc Natl Acad Sci 102:18213–18218CrossRef
go back to reference Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Dener A, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, May DA, McInnes LC, Mills RT, Munson T, Rupp K, Sanan P, Smith BF, Zampini S, Zhang H, Zhang H (2019) PETSc web page Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Dener A, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, May DA, McInnes LC, Mills RT, Munson T, Rupp K, Sanan P, Smith BF, Zampini S, Zhang H, Zhang H (2019) PETSc web page
go back to reference Birch JM, Dickson WB, Dickinson MH (2004) Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J Exp Biol 207(7):1063–1072CrossRef Birch JM, Dickson WB, Dickinson MH (2004) Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J Exp Biol 207(7):1063–1072CrossRef
go back to reference Bode-Oke AT, Zeyghami S, Dong H (2018) Flying in reverse: kinematics and aerodynamics of a dragonfly in backward free flight. J R Soc Interface 15(143):20180102CrossRef Bode-Oke AT, Zeyghami S, Dong H (2018) Flying in reverse: kinematics and aerodynamics of a dragonfly in backward free flight. J R Soc Interface 15(143):20180102CrossRef
go back to reference De Rosis A (2014) On the dynamics of a tandem of asynchronous flapping wings: lattice Boltzmann-immersed boundary simulations. Phys A Stat Mech Appl 410:276–286MathSciNetMATHCrossRef De Rosis A (2014) On the dynamics of a tandem of asynchronous flapping wings: lattice Boltzmann-immersed boundary simulations. Phys A Stat Mech Appl 410:276–286MathSciNetMATHCrossRef
go back to reference De Rosis A (2015) Ground-induced lift enhancement in a tandem of symmetric flapping wings: lattice Boltzmann-immersed boundary simulations. Comput Struct 153:230–238CrossRef De Rosis A (2015) Ground-induced lift enhancement in a tandem of symmetric flapping wings: lattice Boltzmann-immersed boundary simulations. Comput Struct 153:230–238CrossRef
go back to reference Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284(5422):1954–1960CrossRef Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284(5422):1954–1960CrossRef
go back to reference Ellington CP (1984a) The aerodynamics of hovering insect flight. III. Kinematics. Philos Trans R Soc Lond B Biol Sci 305(1122):41–78CrossRef Ellington CP (1984a) The aerodynamics of hovering insect flight. III. Kinematics. Philos Trans R Soc Lond B Biol Sci 305(1122):41–78CrossRef
go back to reference Ellington CP (1984b) The aerodynamics of hovering insect flight. VI. Lift and power requirements. Philos Trans R Soc Lond B Biol Sci 305(1122):145–181CrossRef Ellington CP (1984b) The aerodynamics of hovering insect flight. VI. Lift and power requirements. Philos Trans R Soc Lond B Biol Sci 305(1122):145–181CrossRef
go back to reference Ellington CP, van den Berg C, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384(6610):626CrossRef Ellington CP, van den Berg C, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384(6610):626CrossRef
go back to reference Ennos R (1989) The kinematics and aerodynamics of the free flight of some Diptera. J Exp Biol 142:49–85 Ennos R (1989) The kinematics and aerodynamics of the free flight of some Diptera. J Exp Biol 142:49–85
go back to reference Fadlun EA, Verzicco R, Orlandi P, Mohd Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161(1):35–60MathSciNetMATHCrossRef Fadlun EA, Verzicco R, Orlandi P, Mohd Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161(1):35–60MathSciNetMATHCrossRef
go back to reference Fry SN, Sayaman R, Dickinson MH (2005) The aerodynamics of hovering flight in Drosophila. J Exp Biol 208:2303–2318CrossRef Fry SN, Sayaman R, Dickinson MH (2005) The aerodynamics of hovering flight in Drosophila. J Exp Biol 208:2303–2318CrossRef
go back to reference Gao T, Lu XY (2008) Insect normal hovering flight in ground effect. Phys Fluids 20(8):087101MATHCrossRef Gao T, Lu XY (2008) Insect normal hovering flight in ground effect. Phys Fluids 20(8):087101MATHCrossRef
go back to reference Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207(2):457–492MATHCrossRef Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207(2):457–492MATHCrossRef
go back to reference Goldstein D, Handler R, Sirovich L (1993) Modeling a no-slip flow boundary with an external force field. J Comput Phys 105(2):354–366MATHCrossRef Goldstein D, Handler R, Sirovich L (1993) Modeling a no-slip flow boundary with an external force field. J Comput Phys 105(2):354–366MATHCrossRef
go back to reference Han J, Yuan Z, Chen G (2018) Effects of kinematic parameters on three-dimensional flapping wing at low Reynolds number. Phys Fluids 30(8):081901CrossRef Han J, Yuan Z, Chen G (2018) Effects of kinematic parameters on three-dimensional flapping wing at low Reynolds number. Phys Fluids 30(8):081901CrossRef
go back to reference Kolomenskiy D, Maeda M, Engels T, Liu H, Schneider K, Nave JC (2016) Aerodynamic ground effect in fruitfly sized insect takeoff. PLoS One 11(3):e0152072CrossRef Kolomenskiy D, Maeda M, Engels T, Liu H, Schneider K, Nave JC (2016) Aerodynamic ground effect in fruitfly sized insect takeoff. PLoS One 11(3):e0152072CrossRef
go back to reference Krishnan A (2015) Towards the study of flying snake aerodynamics, and an analysis of the direct forcing method. Ph.D. thesis Krishnan A (2015) Towards the study of flying snake aerodynamics, and an analysis of the direct forcing method. Ph.D. thesis
go back to reference Lan SL, Sun M (2001) Aerodynamic properties of a wing performing unsteady rotational motions at low Reynolds number. Acta Mech 149(1–4):135–147MATHCrossRef Lan SL, Sun M (2001) Aerodynamic properties of a wing performing unsteady rotational motions at low Reynolds number. Acta Mech 149(1–4):135–147MATHCrossRef
go back to reference Meng X, Sun M (2016) Wing kinematics, aerodynamic forces and vortex-wake structures in fruit-flies in forward flight. J Bionic Eng 13(3):478–490CrossRef Meng X, Sun M (2016) Wing kinematics, aerodynamic forces and vortex-wake structures in fruit-flies in forward flight. J Bionic Eng 13(3):478–490CrossRef
go back to reference Minami K, Suzuki K, Inamuro T (2014) Free flight simulations of a dragonfly-like flapping wing-body model using the immersed boundary-lattice Boltzmann method. Fluid Dyn Res 47(1):015505MathSciNetCrossRef Minami K, Suzuki K, Inamuro T (2014) Free flight simulations of a dragonfly-like flapping wing-body model using the immersed boundary-lattice Boltzmann method. Fluid Dyn Res 47(1):015505MathSciNetCrossRef
go back to reference Moriche M, Flores O, García-Villalba M (2016) Three-dimensional instabilities in the wake of a flapping wing at low Reynolds number. Int J Heat Fluid Flow 62:44–55CrossRef Moriche M, Flores O, García-Villalba M (2016) Three-dimensional instabilities in the wake of a flapping wing at low Reynolds number. Int J Heat Fluid Flow 62:44–55CrossRef
go back to reference Norberg RÅ (1975) Hovering flight of the dragonfly Aeschna Juncea L., kinematics and aerodynamics. In: Swimming and flying in nature. Springer, Boston, pp 763–781 Norberg RÅ (1975) Hovering flight of the dragonfly Aeschna Juncea L., kinematics and aerodynamics. In: Swimming and flying in nature. Springer, Boston, pp 763–781
go back to reference Platzer MF, Jones KD, Young J, Lai JCS (2008) Flapping wing aerodynamics: progress and challenges. AIAA J 46(9):2136–2149CrossRef Platzer MF, Jones KD, Young J, Lai JCS (2008) Flapping wing aerodynamics: progress and challenges. AIAA J 46(9):2136–2149CrossRef
go back to reference Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206(23):4191–4208CrossRef Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206(23):4191–4208CrossRef
go back to reference Shahzad A, Tian F-B, Young J, Lai JCS (2018) Effects of Hawkmoth-like flexibility on the aerodynamic performance of flapping wings with different shapes and aspect ratios. Phys Fluids 30(9):091902CrossRef Shahzad A, Tian F-B, Young J, Lai JCS (2018) Effects of Hawkmoth-like flexibility on the aerodynamic performance of flapping wings with different shapes and aspect ratios. Phys Fluids 30(9):091902CrossRef
go back to reference Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang CK, Cesnik CES, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Prog Aerosp Sci 46(7):284–327CrossRef Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang CK, Cesnik CES, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Prog Aerosp Sci 46(7):284–327CrossRef
go back to reference Srinidhi NG, Vengadesan S (2017b) Lagrangian coherent structures in tandem flapping wing hovering. J Bionic Eng 14(2):307–316MATHCrossRef Srinidhi NG, Vengadesan S (2017b) Lagrangian coherent structures in tandem flapping wing hovering. J Bionic Eng 14(2):307–316MATHCrossRef
go back to reference Sudhakar Y, Vengadesan S (2010a) Flight force production by flapping insect wings in inclined stroke plane kinematics. Comput Fluids 39(4):683–695MATHCrossRef Sudhakar Y, Vengadesan S (2010a) Flight force production by flapping insect wings in inclined stroke plane kinematics. Comput Fluids 39(4):683–695MATHCrossRef
go back to reference Sudhakar Y, Vengadesan S (2010b) The functional significance of delayed stall in insect flight. Numer Heat Transf Part A Appl 58:65–83CrossRef Sudhakar Y, Vengadesan S (2010b) The functional significance of delayed stall in insect flight. Numer Heat Transf Part A Appl 58:65–83CrossRef
go back to reference Usherwood JR, Lehmann FO (2008) Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. J R Soc Interface 5(28):1303–1307CrossRef Usherwood JR, Lehmann FO (2008) Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. J R Soc Interface 5(28):1303–1307CrossRef
go back to reference van Truong T, Kim J, Kim MJ, Park HC, Yoon KJ, Byun D (2013) Flow structures around a flapping wing considering ground effect. Exp Fluids 54(7):1575CrossRef van Truong T, Kim J, Kim MJ, Park HC, Yoon KJ, Byun D (2013) Flow structures around a flapping wing considering ground effect. Exp Fluids 54(7):1575CrossRef
go back to reference Wang ZJ (2004) The role of drag in insect hovering. J Exp Biol 207(23):4147–4155CrossRef Wang ZJ (2004) The role of drag in insect hovering. J Exp Biol 207(23):4147–4155CrossRef
go back to reference Wang ZJ, Russell D (2007) Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Phys Rev Lett 99(14):148101CrossRef Wang ZJ, Russell D (2007) Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Phys Rev Lett 99(14):148101CrossRef
go back to reference Wang JK, Sun M (2005) A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight. J Exp Biol 208(19):3785–3804CrossRef Wang JK, Sun M (2005) A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight. J Exp Biol 208(19):3785–3804CrossRef
go back to reference Wang L, Tian F-B (2019) Numerical study of flexible flapping wings with an immersed boundary method: fluid-structure-acoustics interaction. J Fluids Struct 90:396–409CrossRef Wang L, Tian F-B (2019) Numerical study of flexible flapping wings with an immersed boundary method: fluid-structure-acoustics interaction. J Fluids Struct 90:396–409CrossRef
go back to reference Wu JH, Sun M (2004) Unsteady aerodynamic forces of a flapping wing. J Exp Biol 207:1137–1150CrossRef Wu JH, Sun M (2004) Unsteady aerodynamic forces of a flapping wing. J Exp Biol 207:1137–1150CrossRef
Metadata
Title
Investigation of the Unsteady Aerodynamics of Insect Flight: The Use of Immersed Boundary Method
Authors
Srinidhi Nagarada Gadde
Y. Sudhakar
S. Vengadesan
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-3940-4_13

Premium Partners