Skip to main content
Top
Published in: Journal of Nanoparticle Research 7/2011

01-07-2011 | Research paper

Investigation of thermal transport in colloidal silica dispersions (nanofluids)

Authors: David C. Venerus, Yiran Jiang

Published in: Journal of Nanoparticle Research | Issue 7/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermal conductivity enhancement in colloidal silica dispersions (nanofluids) is investigated experimentally using a novel optical technique. The effects of nanoparticle size, concentration, and state of aggregation are examined. New data on well dispersed systems are compared to published data obtained using the more conventional transient hot-wire technique and good agreement was found. Experimental results are also compared with model predictions for relative thermal conductivity based on effective medium theory. For systems composed of larger diameter nanoparticles (~30 nm), good agreement was found between the measured thermal conductivity enhancement and that predicted by the classical Maxwell-Garnett model. For systems composed of smaller nanoparticles (∼10 and 20 nm), thermal conductivity enhancement was reduced by as much as 10%, presumably because interfacial thermal resistance effects become important. Measurements on two systems that were induced to form gels exhibited an increase in thermal conductivity of approximately 5% relative to the well-dispersed systems. The observed increase in thermal conductivity is larger than that predicted by a recently proposed model for aggregated nanofluids.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu L-W, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen H, Chung SJ, Minking K, Chyu M, Das SK, Di Paola R, Ding Y, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao J, Gharagozloo PE, Goodson KE, Gustavo Gutierrez J, Hong H, Horton M, Hu L-W, Iorio CS, Jarzebski AB, Jiang Y, Jin W, Kabelac S, Kamath A, Kedzierski MA, Kim C, Kim J-H, Kim S, Kieng LG, Leong KC, Manna I, Michel B, Ni R, Patel HE, Philip J, Poulikakos D, Reynaud C, Savino R, Singh PK, Song P, Sundararajan T, Timofeeva E, Tritcak T, Turanov AN, Van Vaerenbergh S, Wen D, Witharana S, Yang CC, Yeh W-H, Zhao X-Z, Zhou S-Q (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312CrossRef Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu L-W, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen H, Chung SJ, Minking K, Chyu M, Das SK, Di Paola R, Ding Y, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao J, Gharagozloo PE, Goodson KE, Gustavo Gutierrez J, Hong H, Horton M, Hu L-W, Iorio CS, Jarzebski AB, Jiang Y, Jin W, Kabelac S, Kamath A, Kedzierski MA, Kim C, Kim J-H, Kim S, Kieng LG, Leong KC, Manna I, Michel B, Ni R, Patel HE, Philip J, Poulikakos D, Reynaud C, Savino R, Singh PK, Song P, Sundararajan T, Timofeeva E, Tritcak T, Turanov AN, Van Vaerenbergh S, Wen D, Witharana S, Yang CC, Yeh W-H, Zhao X-Z, Zhou S-Q (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312CrossRef
go back to reference Chen H, Ding Y, He Y, Tan C (2007) Rheological behaviour of ethylene glycol based titania nanofluids. Chem Phys Lett 44:333–337CrossRef Chen H, Ding Y, He Y, Tan C (2007) Rheological behaviour of ethylene glycol based titania nanofluids. Chem Phys Lett 44:333–337CrossRef
go back to reference Chen G, Yu W, Singh D, Cookson D, Routbort J (2008) Application of SAXS to the study of particle-size-dependent thermal conductivity in silica nanofluids. J Nanopart Res 10:1109–1114CrossRef Chen G, Yu W, Singh D, Cookson D, Routbort J (2008) Application of SAXS to the study of particle-size-dependent thermal conductivity in silica nanofluids. J Nanopart Res 10:1109–1114CrossRef
go back to reference Das SK, Choi SUS, Patel HE (2006) Heat transfer in nanofluids—a review. Heat Transf Eng 27:3–19CrossRef Das SK, Choi SUS, Patel HE (2006) Heat transfer in nanofluids—a review. Heat Transf Eng 27:3–19CrossRef
go back to reference Drabarek E, Bartlett J, Hanley HJM, Woolfrey JL, Muzny CD, Butler BD (1999) Shear-induced restructuring of colloidal silica gels. J Sol–Gel Sci Tech 19:279–283CrossRef Drabarek E, Bartlett J, Hanley HJM, Woolfrey JL, Muzny CD, Butler BD (1999) Shear-induced restructuring of colloidal silica gels. J Sol–Gel Sci Tech 19:279–283CrossRef
go back to reference Eapen J, Williams WC, Buongiorno J, Hu LW, Yip S, Rusconi R, Piazza R (2007) Mean-field versus micro-convection effects in nanofluid thermal conduction. Phys Rev Lett 99:095901CrossRef Eapen J, Williams WC, Buongiorno J, Hu LW, Yip S, Rusconi R, Piazza R (2007) Mean-field versus micro-convection effects in nanofluid thermal conduction. Phys Rev Lett 99:095901CrossRef
go back to reference Eastman JA, Phillpot SR, Choi SUS, Keblinski P (2004) Nanofluids for thermal transport. Annu Rev Mater Res 34:219–246CrossRef Eastman JA, Phillpot SR, Choi SUS, Keblinski P (2004) Nanofluids for thermal transport. Annu Rev Mater Res 34:219–246CrossRef
go back to reference Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P (2008) Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf 51:1431–1438CrossRef Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P (2008) Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf 51:1431–1438CrossRef
go back to reference Gao W, Zheng RT, Ohtani H, Zhu DS, Chen G (2009) Experimental investigation of heat conduction mechanisms in nanofluids. Clue on Clustering. Nano Lett 9:4128–4132CrossRef Gao W, Zheng RT, Ohtani H, Zhu DS, Chen G (2009) Experimental investigation of heat conduction mechanisms in nanofluids. Clue on Clustering. Nano Lett 9:4128–4132CrossRef
go back to reference Hanley HJM, Muzny CD, Butler BD, Straty GC, Bartlett J, Drabarek E (1999) Shear-induced restructuring of concentrated colloidal silica gels. J Phys 11:1369–1380 Hanley HJM, Muzny CD, Butler BD, Straty GC, Bartlett J, Drabarek E (1999) Shear-induced restructuring of concentrated colloidal silica gels. J Phys 11:1369–1380
go back to reference Hasselman DPH, Johnson LF (1987) Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater 21:508–515CrossRef Hasselman DPH, Johnson LF (1987) Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater 21:508–515CrossRef
go back to reference Hong KS, Hong T-Km, Yang H-S (2006) Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl Phys Lett 88:031901 Hong KS, Hong T-Km, Yang H-S (2006) Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl Phys Lett 88:031901
go back to reference Keblinski P, Eastman JA, Cahill DG (2005) Nanofluids for thermal transport. Mater Today 8(6):36–44CrossRef Keblinski P, Eastman JA, Cahill DG (2005) Nanofluids for thermal transport. Mater Today 8(6):36–44CrossRef
go back to reference Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P (1989) Universality in colloid aggregation. Nat Mater 339:360–362CrossRef Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P (1989) Universality in colloid aggregation. Nat Mater 339:360–362CrossRef
go back to reference Maxwell JC (1904) A treatise on electricity and magnetism, 3rd edn. Oxford University Press, Oxford Maxwell JC (1904) A treatise on electricity and magnetism, 3rd edn. Oxford University Press, Oxford
go back to reference Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692–6699CrossRef Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692–6699CrossRef
go back to reference Prasher R, Phelan PE, Bhattacharya P (2006a) Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett 6:1529–1534CrossRef Prasher R, Phelan PE, Bhattacharya P (2006a) Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett 6:1529–1534CrossRef
go back to reference Prasher R, Evans W, Meakin P, Fish J, Phelan P, Keblinski P (2006b) Effect of aggregation on thermal conductiion of colloidal nanofluids. Appl Phys Lett 89:143119CrossRef Prasher R, Evans W, Meakin P, Fish J, Phelan P, Keblinski P (2006b) Effect of aggregation on thermal conductiion of colloidal nanofluids. Appl Phys Lett 89:143119CrossRef
go back to reference Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76:061203CrossRef Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76:061203CrossRef
go back to reference Turanov AN, Tolmachev YV (2009) Heat- and mass-transport in aqueous silica nanofluids. Int J Heat Mass Transf 45:1583–1588CrossRef Turanov AN, Tolmachev YV (2009) Heat- and mass-transport in aqueous silica nanofluids. Int J Heat Mass Transf 45:1583–1588CrossRef
go back to reference Venerus DC, Schieber JD, Iddir H, Guzman J, Broerman AW (1999) Measurement of thermal diffusivity in polymer melts using forced Rayleigh light scattering. J Polym Sci Polym Phys Ed 37:1069–1078CrossRef Venerus DC, Schieber JD, Iddir H, Guzman J, Broerman AW (1999) Measurement of thermal diffusivity in polymer melts using forced Rayleigh light scattering. J Polym Sci Polym Phys Ed 37:1069–1078CrossRef
go back to reference Venerus DC, Kabahdi MS, Lee S, Perez-Luna V (2006) Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. J Appl Phys 100:094310CrossRef Venerus DC, Kabahdi MS, Lee S, Perez-Luna V (2006) Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. J Appl Phys 100:094310CrossRef
go back to reference Venerus DC, Buongiorno J, Christianson R, Townsend J, Bang IC, Chen G, Chung SJ, Chyu M, Chen H, Ding Y, Dubois F, Dzido G, Funfschilling D, Galand Q, Gao J, Hong H, Horton M, Hu L-W, Iorio CS, Jarzebski AB, Jiang Y, Kabelac S, Kedzierski MA, Kim C, Kim J-H, Kim S, McKrell T, Ni R, Philip J, Prabhat N, Song P, Van Vaerenbergh S, Wen D, Witharana S, Zhao X-Z, Zhou S-Q (2010) Viscosity measurements on colloidal dispersions (nanofluids) for heat transfer fluids. Appl Rheol 20:44582 Venerus DC, Buongiorno J, Christianson R, Townsend J, Bang IC, Chen G, Chung SJ, Chyu M, Chen H, Ding Y, Dubois F, Dzido G, Funfschilling D, Galand Q, Gao J, Hong H, Horton M, Hu L-W, Iorio CS, Jarzebski AB, Jiang Y, Kabelac S, Kedzierski MA, Kim C, Kim J-H, Kim S, McKrell T, Ni R, Philip J, Prabhat N, Song P, Van Vaerenbergh S, Wen D, Witharana S, Zhao X-Z, Zhou S-Q (2010) Viscosity measurements on colloidal dispersions (nanofluids) for heat transfer fluids. Appl Rheol 20:44582
go back to reference Wang B-X, Zhou L-P, Peng X-F (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2672CrossRef Wang B-X, Zhou L-P, Peng X-F (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2672CrossRef
go back to reference Wilson OM, Hu X, Cahill DG, Braun PV (2002) Colloidal metal particles as probes of nanoscale thermal transport in fluids. Phys Rev B 66:224301CrossRef Wilson OM, Hu X, Cahill DG, Braun PV (2002) Colloidal metal particles as probes of nanoscale thermal transport in fluids. Phys Rev B 66:224301CrossRef
go back to reference Wu C, Cho TJ, Xu J, Lee D, Yang B, Zachariah MR (2010) Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids. Phys Rev E 81:011406CrossRef Wu C, Cho TJ, Xu J, Lee D, Yang B, Zachariah MR (2010) Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids. Phys Rev E 81:011406CrossRef
go back to reference Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29:432CrossRef Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29:432CrossRef
go back to reference Zhou S-Q, Rui N (2008) Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett 92:093123CrossRef Zhou S-Q, Rui N (2008) Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett 92:093123CrossRef
Metadata
Title
Investigation of thermal transport in colloidal silica dispersions (nanofluids)
Authors
David C. Venerus
Yiran Jiang
Publication date
01-07-2011
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 7/2011
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-010-0207-9

Other articles of this Issue 7/2011

Journal of Nanoparticle Research 7/2011 Go to the issue

Premium Partners