Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 11-12/2022

19-11-2022 | ORIGINAL ARTICLE

Investigation on multi-physical field simulations of blade ECM using vertical flow

Authors: Mingzhu Ren, Dong Zhu, Zhenhao Hou, Gaopan Lei

Published in: The International Journal of Advanced Manufacturing Technology | Issue 11-12/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electrochemical machining (ECM), an advanced manufacturing technology, is widely used in aero-engine blades machining. In traditional ECM, the electrolyte flows through the inter-electrode gap (IEG), generating hydrogen bubbles and heat, which affect the conductance and thus influence the machining quality. This paper focuses on the effect of bubble movement on the flow field and the machining quality of ECM. A novel vertical flow mode of electrolyte is proposed according to the bubbles dynamics analysis. Multi-physical fields simulations of blade ECM using vertical and horizontal flows were carried out. With an initial gas void fraction, flow rate, and temperature at the inlet of 0, 19.7 m/s, and 302.65 K, respectively, in both flow modes, the vertical flow reduces the gas void fraction, flow rate, and temperature at the outlet by 2.4%, 0.4 m/s, and 0.6 K, and increases the conductance by 0.47 S/m. Thus, the vertical flow of the electrolyte is beneficial in reducing the gas void fraction and controlling the temperature rise, while enhancing the conductance. Then, the corresponding experiments using a vertical flow were carried out. The maximum machining deviation ranges from 3.4 to 75.6 μm and surface roughness Ra < 0.35 μm. The machining quality is high and the variation observed in the experiments is consistent with the simulation results, the validity and correctness of the simulations are verified. Thus, the vertical flow mode proposed in this paper is appropriate, can be used for other complex structures in ECM.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hua J, Li ZY (2009) Cathode design of aero-engine blades in electrochemical machining based on characteristics of gap distribution. Adv Mater Res 69–70:248–252CrossRef Hua J, Li ZY (2009) Cathode design of aero-engine blades in electrochemical machining based on characteristics of gap distribution. Adv Mater Res 69–70:248–252CrossRef
2.
go back to reference Rajurkar KP, Zhu D, Mcgeough JA, Kozak J, De Silva A (1999) New developments in electro-chemical machining. CIRP Ann Manuf Technol 48(2):567–579CrossRef Rajurkar KP, Zhu D, Mcgeough JA, Kozak J, De Silva A (1999) New developments in electro-chemical machining. CIRP Ann Manuf Technol 48(2):567–579CrossRef
3.
go back to reference Geethapriyan T, Kalaichelvan K, Muthuramalingam T, Rajadurai A (2018) Performance analysis of process parameters on machining α–β titanium alloy in electrochemical micromachining process. Proc IMechE Part B: J Eng Manuf 232(9):1577–1589CrossRef Geethapriyan T, Kalaichelvan K, Muthuramalingam T, Rajadurai A (2018) Performance analysis of process parameters on machining α–β titanium alloy in electrochemical micromachining process. Proc IMechE Part B: J Eng Manuf 232(9):1577–1589CrossRef
4.
go back to reference Leese R, Ivanov A (2018) Electrochemical micromachining: review of factors affecting the process applicability in micro-manufacturing. Proc IMechE Part B: J Eng Manuf 232(2):195–207CrossRef Leese R, Ivanov A (2018) Electrochemical micromachining: review of factors affecting the process applicability in micro-manufacturing. Proc IMechE Part B: J Eng Manuf 232(2):195–207CrossRef
5.
go back to reference Zhou XC, Cao CY, Wang HX, Lin H (2020) Study on the multi-field coupling model of electrolyte temperature distribution in electrochemical machining. Int J Adv Manuf Technol 109:1655–1662CrossRef Zhou XC, Cao CY, Wang HX, Lin H (2020) Study on the multi-field coupling model of electrolyte temperature distribution in electrochemical machining. Int J Adv Manuf Technol 109:1655–1662CrossRef
6.
go back to reference Lei GP, Zhu D, Zhu D (2022) Research on multiphysics coupling fields in electrochemical trepanning of lateral flow. Int J Adv Manuf Technol 119:5131–5141CrossRef Lei GP, Zhu D, Zhu D (2022) Research on multiphysics coupling fields in electrochemical trepanning of lateral flow. Int J Adv Manuf Technol 119:5131–5141CrossRef
7.
go back to reference Klocke F, Zeis M, Harst S, Klink A, Veselovac D, Baumgärtner M (2013) Modeling and simulation of the electrochemical machining (ECM) material removal process for the manufacture of aero engine components. Procedia CIRP 8:265–270CrossRef Klocke F, Zeis M, Harst S, Klink A, Veselovac D, Baumgärtner M (2013) Modeling and simulation of the electrochemical machining (ECM) material removal process for the manufacture of aero engine components. Procedia CIRP 8:265–270CrossRef
8.
go back to reference Kozak J (2013) The computer simulation of electrochemical shaping processes. IAENG Transactions on Engineering Technologies. Springer, Dordrecht, pp 95–107 Kozak J (2013) The computer simulation of electrochemical shaping processes. IAENG Transactions on Engineering Technologies. Springer, Dordrecht, pp 95–107
9.
go back to reference Fujisawa T, Inaba K, Yamamoto M, Kato D (2008) Multiphysics simulation of electrochemical machining process for three-dimensional compressor blade. ASME J Fluids Eng 130(8):081602CrossRef Fujisawa T, Inaba K, Yamamoto M, Kato D (2008) Multiphysics simulation of electrochemical machining process for three-dimensional compressor blade. ASME J Fluids Eng 130(8):081602CrossRef
10.
go back to reference Klocke F, Zeis M, Herrig T, Harst S, Klink A (2014) Optical in situ measurements and interdisciplinary modeling of the electrochemical sinking process of Inconel 718. Procedia CIRP 24:114–119CrossRef Klocke F, Zeis M, Herrig T, Harst S, Klink A (2014) Optical in situ measurements and interdisciplinary modeling of the electrochemical sinking process of Inconel 718. Procedia CIRP 24:114–119CrossRef
11.
go back to reference Klocke F, Zeis M, Klink A (2015) Interdisciplinary modelling of the electrochemical machining process for engine blades. CIRP Ann Manuf Technol 64(1):217–220CrossRef Klocke F, Zeis M, Klink A (2015) Interdisciplinary modelling of the electrochemical machining process for engine blades. CIRP Ann Manuf Technol 64(1):217–220CrossRef
12.
go back to reference Fang XL, Qu NS, Zhang YD, Xu Z, Zhu D (2014) Effects of pulsating electrolyte flow in electrochemical machining. J Mater Process Technol 214(1):36–43CrossRef Fang XL, Qu NS, Zhang YD, Xu Z, Zhu D (2014) Effects of pulsating electrolyte flow in electrochemical machining. J Mater Process Technol 214(1):36–43CrossRef
13.
go back to reference Wang W, Zhu D, Qu NS, Huang SF, Fang XL (2010) Electrochemical drilling with vacuum extraction of electrolyte. J Mater Process Technol 210(2):238–244CrossRef Wang W, Zhu D, Qu NS, Huang SF, Fang XL (2010) Electrochemical drilling with vacuum extraction of electrolyte. J Mater Process Technol 210(2):238–244CrossRef
14.
go back to reference Tang L, Feng X, Zhai KG, Ji Y, Wang Z, Lei QB, Ren L (2019) Gap flow field simulation and experiment of electrochemical machining special-shaped inner spiral tube. Int J Adv Manuf Technol 100:2485–2493CrossRef Tang L, Feng X, Zhai KG, Ji Y, Wang Z, Lei QB, Ren L (2019) Gap flow field simulation and experiment of electrochemical machining special-shaped inner spiral tube. Int J Adv Manuf Technol 100:2485–2493CrossRef
15.
go back to reference Zhu D, Zhang RH, Liu C (2017) Flow field improvement by optimizing turning profile at electrolyte inlet in electrochemical machining. Int J Precis Eng Manuf 18(1):15–22CrossRef Zhu D, Zhang RH, Liu C (2017) Flow field improvement by optimizing turning profile at electrolyte inlet in electrochemical machining. Int J Precis Eng Manuf 18(1):15–22CrossRef
16.
go back to reference Zhu D, Zhu D, Xu ZY, Xu Q, Liu J (2010) Investigation on the flow field of W-shape electrolyte flow mode in electrochemical machining. J Appl Electrochem 40(3):525–532CrossRef Zhu D, Zhu D, Xu ZY, Xu Q, Liu J (2010) Investigation on the flow field of W-shape electrolyte flow mode in electrochemical machining. J Appl Electrochem 40(3):525–532CrossRef
17.
go back to reference Auton TR (1983) The dynamics of bubbles, drops and particles in motion in liquids. Dissertation, University of Cambridge, UK Auton TR (1983) The dynamics of bubbles, drops and particles in motion in liquids. Dissertation, University of Cambridge, UK
18.
go back to reference Delnoij E, Lammers FA, Kuipers JAM, Swaaij WPM (1997) Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model. Chem Eng Sci 52(9):1429–1458CrossRef Delnoij E, Lammers FA, Kuipers JAM, Swaaij WPM (1997) Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model. Chem Eng Sci 52(9):1429–1458CrossRef
19.
go back to reference Odar F (1964) Forces on a sphere accelerating in a viscous fluid. J Fluid Mech 18(2):302–314CrossRefMATH Odar F (1964) Forces on a sphere accelerating in a viscous fluid. J Fluid Mech 18(2):302–314CrossRefMATH
20.
go back to reference Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic Press, New York, pp 22–28 Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic Press, New York, pp 22–28
21.
go back to reference McGeough JA (1974) Principles of electrochemical machining. Chapman & Hall, London McGeough JA (1974) Principles of electrochemical machining. Chapman & Hall, London
22.
go back to reference Wang MH, Tong WJ, Qiu GZ, Xu XF, Speidel A, Mitchell-Smith J (2019) Multiphysics study in air-shielding electrochemical micromachining. J Mater Process Technol 43:124–135 Wang MH, Tong WJ, Qiu GZ, Xu XF, Speidel A, Mitchell-Smith J (2019) Multiphysics study in air-shielding electrochemical micromachining. J Mater Process Technol 43:124–135
23.
go back to reference Hu XY, Zhu D, Li JB, Gu ZZ (2019) Flow field research on electrochemical machining with gas film insulation. J Mater Process Technol 267:247–256CrossRef Hu XY, Zhu D, Li JB, Gu ZZ (2019) Flow field research on electrochemical machining with gas film insulation. J Mater Process Technol 267:247–256CrossRef
24.
go back to reference Thorpe JF, Zerkle RD (1969) Analytic determination of the equilibrium electrode gap in electrochemical machining. Int J Mach Tool Design Res 9(2):131–144CrossRef Thorpe JF, Zerkle RD (1969) Analytic determination of the equilibrium electrode gap in electrochemical machining. Int J Mach Tool Design Res 9(2):131–144CrossRef
25.
go back to reference Cengel YA (2003) Heat transfer: A practical approach, 2nd edn. McGraw-Hill, New York Cengel YA (2003) Heat transfer: A practical approach, 2nd edn. McGraw-Hill, New York
26.
go back to reference Deconinck D, Damme SV, Deconinck J (2012) A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis. Electrochimica Acta 60(8):321–328CrossRef Deconinck D, Damme SV, Deconinck J (2012) A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis. Electrochimica Acta 60(8):321–328CrossRef
27.
go back to reference Tipton H (1968) The determination of tool shape for ECM. Mach Prod Eng 2:325–328 Tipton H (1968) The determination of tool shape for ECM. Mach Prod Eng 2:325–328
28.
go back to reference Wang DY, Zhu ZW, He B, Ge YC, Zhu D (2017) Effect of the breakdown time of a passive film on the electrochemical machining of rotating cylindrical electrode in NaNO3 solution. J Mater Process Tech 239:251–257CrossRef Wang DY, Zhu ZW, He B, Ge YC, Zhu D (2017) Effect of the breakdown time of a passive film on the electrochemical machining of rotating cylindrical electrode in NaNO3 solution. J Mater Process Tech 239:251–257CrossRef
29.
go back to reference Wang JT, Xu ZY, Wang J, Zhu D (2021) Anodic dissolution characteristics of Inconel 718 in C6H5K3O7 and NaNO3 solutions by pulse electrochemical machining. Corros Sci 183:109335CrossRef Wang JT, Xu ZY, Wang J, Zhu D (2021) Anodic dissolution characteristics of Inconel 718 in C6H5K3O7 and NaNO3 solutions by pulse electrochemical machining. Corros Sci 183:109335CrossRef
Metadata
Title
Investigation on multi-physical field simulations of blade ECM using vertical flow
Authors
Mingzhu Ren
Dong Zhu
Zhenhao Hou
Gaopan Lei
Publication date
19-11-2022
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 11-12/2022
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-022-10496-6

Other articles of this Issue 11-12/2022

The International Journal of Advanced Manufacturing Technology 11-12/2022 Go to the issue

Premium Partners