Skip to main content
Top
Published in: Electrical Engineering 2/2020

02-01-2020 | Original Paper

Investigation on planar electromagnetic levitation system using lead compensation and LQR controllers

Author: Mundher H. A. Yaseen

Published in: Electrical Engineering | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Magnetic levitation is a method by which an object is suspended with no support other than magnetic fields. The main objective of this study is to demonstrate stabilized closed-loop control of 2-DOF maglev experimentally using real-time control Simulink feature of (SIMLAB) microcontroller. Phase lead compensation and linear quadratic regulator (LQR) controllers are employed to examine the stability performance of the maglev control system under effect of sudden wave signal change and load on maglev plane. The effect of sudden change of applied wave signal on single point, line and plane is presented. Furthermore, in order to study the effect of sudden change of applied load, the direct full load has been applied on all points of the prototype maglev plate simultaneously. Moreover, the airgap distance controlled using phase lead compensation controller is unstable with high oscillation. Meanwhile, LQR controller provided more stability, homogeneous response and good agreement. Additionally, the results of pulse width modulation reveal that the control system using LQR controller provides identical and smooth response to adjust the levitated plane compared to phase lead compensation controller.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference An S, Ma Y, Cao Z (2009) Applying simple adaptive control to magnetic levitation system. In: Second international conference on intelligent computation technology and automation, 2009. ICICTA’09. IEEE An S, Ma Y, Cao Z (2009) Applying simple adaptive control to magnetic levitation system. In: Second international conference on intelligent computation technology and automation, 2009. ICICTA’09. IEEE
3.
go back to reference Liu H, Zhang X, Chang W (2009) PID control to maglev train system. In: International conference on industrial and information systems, 2009. IIS’09. IEEE Liu H, Zhang X, Chang W (2009) PID control to maglev train system. In: International conference on industrial and information systems, 2009. IIS’09. IEEE
4.
go back to reference Kumar EV, Jerome J (2013) LQR based optimal tuning of PID controller for trajectory tracking of magnetic levitation system. Procedia Eng 64:254–264CrossRef Kumar EV, Jerome J (2013) LQR based optimal tuning of PID controller for trajectory tracking of magnetic levitation system. Procedia Eng 64:254–264CrossRef
5.
go back to reference Hypiusová M, Osuský J (2010) PID controller design for magnetic levitation model. In: International conference Hypiusová M, Osuský J (2010) PID controller design for magnetic levitation model. In: International conference
6.
go back to reference Chunfang L, Jian Z (2012) Design of second-order sliding mode controller for electromagnetic levitation grip used in CNC. In: Control and decision conference (CCDC), 2012 24th Chinese. IEEE Chunfang L, Jian Z (2012) Design of second-order sliding mode controller for electromagnetic levitation grip used in CNC. In: Control and decision conference (CCDC), 2012 24th Chinese. IEEE
7.
go back to reference Unni AC et al (2016) PID, fuzzy and LQR controllers for magnetic levitation system. In: International conference on cogeneration, small power plants and district energy (ICUE). IEEE Unni AC et al (2016) PID, fuzzy and LQR controllers for magnetic levitation system. In: International conference on cogeneration, small power plants and district energy (ICUE). IEEE
8.
go back to reference Shawki N, Alam S, Gupta AKS (2014) Design and implementation of a magnetic levitation system using phase lead compensation technique. In: 2014 9th International forum on strategic technology (IFOST). IEEE Shawki N, Alam S, Gupta AKS (2014) Design and implementation of a magnetic levitation system using phase lead compensation technique. In: 2014 9th International forum on strategic technology (IFOST). IEEE
9.
go back to reference Shiao Y-S (2001) Design and implementation of a controller for a magnetic levitation system. Proc Natl Sci Counc 11(2):88–94 Shiao Y-S (2001) Design and implementation of a controller for a magnetic levitation system. Proc Natl Sci Counc 11(2):88–94
10.
go back to reference Bohn G, Steinmetz G (1984) The electromagnetic levitation and guidance technology of the ‘transrapid’ test facility Emsland. IEEE Trans Magn 20(5):1666–1671CrossRef Bohn G, Steinmetz G (1984) The electromagnetic levitation and guidance technology of the ‘transrapid’ test facility Emsland. IEEE Trans Magn 20(5):1666–1671CrossRef
11.
go back to reference Trumper DL, Olson SM, Subrahmanyan PK (1997) Linearizing control of magnetic suspension systems. IEEE Trans Control Syst Technol 5(4):427–438CrossRef Trumper DL, Olson SM, Subrahmanyan PK (1997) Linearizing control of magnetic suspension systems. IEEE Trans Control Syst Technol 5(4):427–438CrossRef
12.
go back to reference Lee S-H et al (2000) Self-tuning control of electromagnetic levitation systems. Control Eng Pract 8(7):749–756CrossRef Lee S-H et al (2000) Self-tuning control of electromagnetic levitation systems. Control Eng Pract 8(7):749–756CrossRef
13.
go back to reference Banerjee S, Prasad D, Pal J (2007) Design, implementation, and testing of a single axis levitation system for the suspension of a platform. ISA Trans 46(2):239–246CrossRef Banerjee S, Prasad D, Pal J (2007) Design, implementation, and testing of a single axis levitation system for the suspension of a platform. ISA Trans 46(2):239–246CrossRef
14.
go back to reference Lim TM, Cheng S (2011) Magnetic levitation of a one DOF system using simultaneous actuation and displacement sensing technique. Mechatronics 21(3):548–559CrossRef Lim TM, Cheng S (2011) Magnetic levitation of a one DOF system using simultaneous actuation and displacement sensing technique. Mechatronics 21(3):548–559CrossRef
15.
go back to reference Siddiqui MR, Ahmad S, Asghar U (2017) Stabilizing control of a 1-DOF electromagnetic levitation of pivoted-free rigid ferromagnetic beam. Measurement 106:35–45CrossRef Siddiqui MR, Ahmad S, Asghar U (2017) Stabilizing control of a 1-DOF electromagnetic levitation of pivoted-free rigid ferromagnetic beam. Measurement 106:35–45CrossRef
16.
go back to reference Xing F et al (2014) Levitation force control of maglev permanent synchronous planar motor based on multivariable feedback linearization method. In: 2014 17th International conference on electrical machines and systems (ICEMS). IEEE Xing F et al (2014) Levitation force control of maglev permanent synchronous planar motor based on multivariable feedback linearization method. In: 2014 17th International conference on electrical machines and systems (ICEMS). IEEE
20.
go back to reference Caballero-Ruiz A et al (2014) Micropositioning system for the study of neural activity in free-behaving rats. In: 2014 International conference on mechatronics, electronics and automotive engineering (ICMEAE). IEEE Caballero-Ruiz A et al (2014) Micropositioning system for the study of neural activity in free-behaving rats. In: 2014 International conference on mechatronics, electronics and automotive engineering (ICMEAE). IEEE
21.
go back to reference Zou D et al (2008) Maglev system controller design based on the feedback linearization methods. In: International conference on information and automation, 2008. ICIA 2008. IEEE Zou D et al (2008) Maglev system controller design based on the feedback linearization methods. In: International conference on information and automation, 2008. ICIA 2008. IEEE
22.
go back to reference Zhang F, Suyama K (1995) Nonlinear feedback control of magnetic levitating system by exact linearization approach. In: Proceedings of the 4th IEEE conference on control applications, 1995. IEEE Zhang F, Suyama K (1995) Nonlinear feedback control of magnetic levitating system by exact linearization approach. In: Proceedings of the 4th IEEE conference on control applications, 1995. IEEE
23.
go back to reference Biswas P, Bannerjee S (2012) Analysis of UI and UU type rail and actuator used in electromagnetic levitation system using FEM software. Int J Emerg Technol Adv Eng 2(5):32–39 Biswas P, Bannerjee S (2012) Analysis of UI and UU type rail and actuator used in electromagnetic levitation system using FEM software. Int J Emerg Technol Adv Eng 2(5):32–39
24.
go back to reference Sailan K, Kuhnert K (2013) DC motor angular position control using PID controller for the purpose of controlling the hydraulic pump. In: International conference on control, engineering and information technology (CEIT’13) Sailan K, Kuhnert K (2013) DC motor angular position control using PID controller for the purpose of controlling the hydraulic pump. In: International conference on control, engineering and information technology (CEIT’13)
25.
go back to reference Sintayehu C (2007) Magnetic levitation on a steel ball. Addis Ababa University, Addis AbabaMATH Sintayehu C (2007) Magnetic levitation on a steel ball. Addis Ababa University, Addis AbabaMATH
Metadata
Title
Investigation on planar electromagnetic levitation system using lead compensation and LQR controllers
Author
Mundher H. A. Yaseen
Publication date
02-01-2020
Publisher
Springer Berlin Heidelberg
Published in
Electrical Engineering / Issue 2/2020
Print ISSN: 0948-7921
Electronic ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-019-00905-7

Other articles of this Issue 2/2020

Electrical Engineering 2/2020 Go to the issue