Skip to main content
Top
Published in: Wireless Personal Communications 4/2018

18-01-2018

IOT Based Augmented Perturb-and-Observe Soft Switching Boost Converters for Photovoltaic Power Systems in Smart Cities

Authors: J. Barsana Banu, M. Balasingh Moses

Published in: Wireless Personal Communications | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper focuses on IOT based soft switching boost converter based solar energy applications for smart cities and making cities smarter and greener around the globe. It presents one of the applications of the Internet of Things to design and implementation of a highly efficient boost converter used for powering the Arduino and the Bluetooth device for controlling the switching of the led and buzzer by using smart city applications. The soft switching boost converter is essential to maximize the low-level voltage obtained from the solar board to the enhanced voltage conversion ratio for the efficient electric power generation. In this paper, the three separate methodologies of DC–DC boost converters with additional resonant/snubber circuit and resistive load associated with solar panel modules proposed with maximum power point tracking (MPPT) control. The MPPT is obtained by modified augmented perturb and observe algorithm. IoT helps Smart City(SC) systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. It is utilized to extract the most extreme power from solar panel by controlling the duty ratio of the suggested soft switching based boost converter. In this paper a smart IOT system is used to control and monitoring the effect of reference power variations, parameter values to the voltage control to the converter. The solar panel, boost converter and the MPPT is modeled using MATLAB/SIMULINK environment and reach the power transfer efficiency up to 97%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference George, C. K., & Antonio, T. A. (2013). Non-linear voltage regulator design for DC/DC boost converters used in photovoltaic applications: Analysis and experimental results. IET Renewable Power Generation, 7(3), 296–308.CrossRef George, C. K., & Antonio, T. A. (2013). Non-linear voltage regulator design for DC/DC boost converters used in photovoltaic applications: Analysis and experimental results. IET Renewable Power Generation, 7(3), 296–308.CrossRef
2.
go back to reference Ishaque, K., Salam, Z., & Syafaruddin, (2011). A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on the two-diode model. Solar Energy, 85(9), 2217–2227.CrossRef Ishaque, K., Salam, Z., & Syafaruddin, (2011). A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on the two-diode model. Solar Energy, 85(9), 2217–2227.CrossRef
3.
go back to reference Bennett, T., Zilouchian, A., & Messenger, R. (2012). Photovoltaic model and converter topology considerations for MPPT purposes. Solar Energy, 86(7), 2029–2040.CrossRef Bennett, T., Zilouchian, A., & Messenger, R. (2012). Photovoltaic model and converter topology considerations for MPPT purposes. Solar Energy, 86(7), 2029–2040.CrossRef
4.
go back to reference Jaber, A. A. Q., Jiang, Y., & Orabi, M. (2014). Mppt control and architecture for pv solar panel with sub-module integrated converters. Journal of Power Electronics, 14(6), 1281–1292.CrossRef Jaber, A. A. Q., Jiang, Y., & Orabi, M. (2014). Mppt control and architecture for pv solar panel with sub-module integrated converters. Journal of Power Electronics, 14(6), 1281–1292.CrossRef
5.
go back to reference Kamarzaman, N. A., & Tan, C. W. (2014). A comprehensive review of maximum power point tracking algorithms for photovoltaic systems. Renewable and Sustainable Energy Reviews, 37, 585–598.CrossRef Kamarzaman, N. A., & Tan, C. W. (2014). A comprehensive review of maximum power point tracking algorithms for photovoltaic systems. Renewable and Sustainable Energy Reviews, 37, 585–598.CrossRef
6.
go back to reference Mohamed, A. E., Mohamed, A. F., & Nasr, A. (2016). Modeling and evaluation of main maximum power point tracking algorithms for photovoltaics systems. Renewable and Sustainable Energy Reviews, 58, 1578–1586.CrossRef Mohamed, A. E., Mohamed, A. F., & Nasr, A. (2016). Modeling and evaluation of main maximum power point tracking algorithms for photovoltaics systems. Renewable and Sustainable Energy Reviews, 58, 1578–1586.CrossRef
7.
go back to reference Rezk, H., & Ali, M. E. (2015). A comprehensive comparison of different MPPT techniques for photovoltaic systems. Solar Energy, 112, 1–11.CrossRef Rezk, H., & Ali, M. E. (2015). A comprehensive comparison of different MPPT techniques for photovoltaic systems. Solar Energy, 112, 1–11.CrossRef
8.
go back to reference Ozcelik, M. A., & Yilmaz, A. S. (2015). Improving the performance of MPPT in PV systems by modified Perturb-and-Observe algorithm. Journal of Engineering Research, 3(3), 77–96.CrossRef Ozcelik, M. A., & Yilmaz, A. S. (2015). Improving the performance of MPPT in PV systems by modified Perturb-and-Observe algorithm. Journal of Engineering Research, 3(3), 77–96.CrossRef
9.
go back to reference Mukti, R. J., & Islam, A. (2015). Modeling and performance analysis of pv module with maximum power point tracking in matlab/simulink. Applied Solar Energy, 51(4), 245–252.CrossRef Mukti, R. J., & Islam, A. (2015). Modeling and performance analysis of pv module with maximum power point tracking in matlab/simulink. Applied Solar Energy, 51(4), 245–252.CrossRef
10.
go back to reference Taghvaee, M. H., Radzi, M. A. M., Moosavain, S. M., Hizam, H., & Marhaban, M. H. (2013). A current and future study on non-isolated DC–DC converters for photovoltaic applications. Renewable and Sustainable Energy Reviews, 17, 216–227.CrossRef Taghvaee, M. H., Radzi, M. A. M., Moosavain, S. M., Hizam, H., & Marhaban, M. H. (2013). A current and future study on non-isolated DC–DC converters for photovoltaic applications. Renewable and Sustainable Energy Reviews, 17, 216–227.CrossRef
11.
go back to reference Kulkarni, A., & John, V. (2016). HF Transformer based grid-connected inverter topology for photovoltaic systems. IETE Technical Review, 33(1), 69–75.CrossRef Kulkarni, A., & John, V. (2016). HF Transformer based grid-connected inverter topology for photovoltaic systems. IETE Technical Review, 33(1), 69–75.CrossRef
12.
go back to reference Islam, M., Mekhilef, S., & Hasan, M. (2015). Single phase transformerless inverter topologies for grid-tied photovoltaic system: A review. Renewable and Sustainable Energy Reviews, 45, 69–86.CrossRef Islam, M., Mekhilef, S., & Hasan, M. (2015). Single phase transformerless inverter topologies for grid-tied photovoltaic system: A review. Renewable and Sustainable Energy Reviews, 45, 69–86.CrossRef
13.
go back to reference Patrao, I., Figueres, E., Gonzalez-Espin, F., & Garcera, G. (2011). Transformerless topologies for grid-connected single-phase photovoltaic inverters. Renewable and Sustainable Energy Reviews, 15(7), 3423–3431.CrossRef Patrao, I., Figueres, E., Gonzalez-Espin, F., & Garcera, G. (2011). Transformerless topologies for grid-connected single-phase photovoltaic inverters. Renewable and Sustainable Energy Reviews, 15(7), 3423–3431.CrossRef
14.
go back to reference Yang, Y., & Blaabjerg, F. (2015). Overview of single-phase grid-connected photovoltaic systems. Electric Power Components and Systems, 43(12), 1352–1363.CrossRef Yang, Y., & Blaabjerg, F. (2015). Overview of single-phase grid-connected photovoltaic systems. Electric Power Components and Systems, 43(12), 1352–1363.CrossRef
15.
go back to reference Du, Y., & Lu, D. D. (2012). Battery-integrated boost converter utilizing distributed MPPT configuration for photovoltaic systems. Solar Energy, 85(9), 1992–2002.CrossRef Du, Y., & Lu, D. D. (2012). Battery-integrated boost converter utilizing distributed MPPT configuration for photovoltaic systems. Solar Energy, 85(9), 1992–2002.CrossRef
16.
go back to reference Tseng, S., & Tsai, C. (2012). Photovoltaic power system with an interleaving boost converter for battery charger applications. International Journal of Photoenergy. Article ID 936843, 1–15. Tseng, S., & Tsai, C. (2012). Photovoltaic power system with an interleaving boost converter for battery charger applications. International Journal of Photoenergy. Article ID 936843, 1–15.
17.
go back to reference Tseng, S., & Wang, H. (2013). A photovoltaic power system using a high step-up converter for dc load applications. Energies, 6(2), 1068–1100.CrossRef Tseng, S., & Wang, H. (2013). A photovoltaic power system using a high step-up converter for dc load applications. Energies, 6(2), 1068–1100.CrossRef
18.
go back to reference Abusorrah, A., Al-Hindawi, M. M., Al-Turki, Y., Mandal, K., Giaouris, D., Banerjee, S., et al. (2013). Stability of a boost converter fed from photovoltaic source. Solar Energy., 98, 458–471.CrossRef Abusorrah, A., Al-Hindawi, M. M., Al-Turki, Y., Mandal, K., Giaouris, D., Banerjee, S., et al. (2013). Stability of a boost converter fed from photovoltaic source. Solar Energy., 98, 458–471.CrossRef
19.
go back to reference Freitas, A. A. A., Tofoli, F. L., Junior, E. M. S., Daher, S., & Antunes, F. L. M. (2015). High-voltage gain DC–DC boost converter with coupled inductors for photovoltaic systems. IET Power Electronics, 8(10), 1885–1892.CrossRef Freitas, A. A. A., Tofoli, F. L., Junior, E. M. S., Daher, S., & Antunes, F. L. M. (2015). High-voltage gain DC–DC boost converter with coupled inductors for photovoltaic systems. IET Power Electronics, 8(10), 1885–1892.CrossRef
20.
go back to reference Sundar, G., Karthick, N., & Reddy, S. R. (2014). High step–up DC–DC converter for ac photovoltaic module with mppt control. Journal of Electrical Engineering, 65(4), 248–253.CrossRef Sundar, G., Karthick, N., & Reddy, S. R. (2014). High step–up DC–DC converter for ac photovoltaic module with mppt control. Journal of Electrical Engineering, 65(4), 248–253.CrossRef
21.
go back to reference Chen, H., & Lin, W. (2014). Mppt and voltage balancing control with sensing only inductor current for photovoltaic-fed, three-level, boost-type converters. IEEE Transactions on Power Electronics, 29(1), 29–35.CrossRef Chen, H., & Lin, W. (2014). Mppt and voltage balancing control with sensing only inductor current for photovoltaic-fed, three-level, boost-type converters. IEEE Transactions on Power Electronics, 29(1), 29–35.CrossRef
22.
go back to reference Choi, W., & Lee, C. (2012). Photovoltaic panel integrated power conditioning system using a high efficiency step-up DC–DC converter. Renewable Energy, 41, 227–234.CrossRef Choi, W., & Lee, C. (2012). Photovoltaic panel integrated power conditioning system using a high efficiency step-up DC–DC converter. Renewable Energy, 41, 227–234.CrossRef
23.
go back to reference Abdi, B., Safaei, A., Moghani, J. S., & Abyaneh, H. A. (2013). An overview to soft-switching boost converters for photovoltaic. International Journal of Computer and Electrical Engineering, 5(1), 18–21.CrossRef Abdi, B., Safaei, A., Moghani, J. S., & Abyaneh, H. A. (2013). An overview to soft-switching boost converters for photovoltaic. International Journal of Computer and Electrical Engineering, 5(1), 18–21.CrossRef
Metadata
Title
IOT Based Augmented Perturb-and-Observe Soft Switching Boost Converters for Photovoltaic Power Systems in Smart Cities
Authors
J. Barsana Banu
M. Balasingh Moses
Publication date
18-01-2018
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2018
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5280-x

Other articles of this Issue 4/2018

Wireless Personal Communications 4/2018 Go to the issue