Skip to main content
Top
Published in: Water Resources Management 15/2015

01-12-2015

Irrigation Demand Forecasting Using Artificial Neuro-Genetic Networks

Authors: R. González Perea, E. Camacho Poyato, P. Montesinos, J. A. Rodríguez Díaz

Published in: Water Resources Management | Issue 15/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, a significant evolution of forecasting methods has been possible due to advances in artificial computational intelligence. The achievement of the optimal architecture of an ANN is a complex process. Thus, in this work, an Evolutionary Robotic (study of the evolution of an ANN using Genetic Algorithm) approach has been used to obtain an Artificial Neuro-Genetic Networks (ANGN) to the short-term forecasting of daily irrigation water demand that maximizes the accuracy of the predictions. The methodology is applied in the Bembézar Irrigation District (Southern Spain). An optimal ANGN architecture (ANGN (7, 29, 16, 1)) has achieved obtaining a Standard Error Prediction (SEP) value of the daily water demand of 12.63 % and explaining 93 % of the total variance observed during validation process. The developed model proved to be a powerful tool that, without long dataset and time requirements, can be very useful for the development of management strategies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abrahart RJ, See L (2000) Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol Process 14:2157–2172CrossRef Abrahart RJ, See L (2000) Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrol Process 14:2157–2172CrossRef
go back to reference Abrahart RJ, See L (2002) Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments. Hydrol Earth Syst Sci 6(4):655–670CrossRef Abrahart RJ, See L (2002) Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments. Hydrol Earth Syst Sci 6(4):655–670CrossRef
go back to reference Abrahart RJ, See L, Kneale PE (1999) Using pruning algorithms and genetic algorithms to optimize network architectures and forecasting inputs in a neural network rainfall–runoff model. J Hydroinf 1(2):103–114 Abrahart RJ, See L, Kneale PE (1999) Using pruning algorithms and genetic algorithms to optimize network architectures and forecasting inputs in a neural network rainfall–runoff model. J Hydroinf 1(2):103–114
go back to reference Agarwal A, Mishra SK, Ram S, Singh JK (2006) Simulation of runoff and sediment yield using artificial neural networks. Biosyst Eng 94(4):597–613CrossRef Agarwal A, Mishra SK, Ram S, Singh JK (2006) Simulation of runoff and sediment yield using artificial neural networks. Biosyst Eng 94(4):597–613CrossRef
go back to reference Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome
go back to reference Anctil F, Rat A (2005) Evaluation of neural network stream flow forecasting on 47 watersheds. J Hydrol Eng 10(1):85–88CrossRef Anctil F, Rat A (2005) Evaluation of neural network stream flow forecasting on 47 watersheds. J Hydrol Eng 10(1):85–88CrossRef
go back to reference Battiti R (1992) First and second order methods for learning: between steepest descent and Newton’s method. Neural Comput 4(2):141–166CrossRef Battiti R (1992) First and second order methods for learning: between steepest descent and Newton’s method. Neural Comput 4(2):141–166CrossRef
go back to reference Brent RP (1973) Algorithms for minimization without derivatives. Prentice-Hall, Englewood Cliffs Brent RP (1973) Algorithms for minimization without derivatives. Prentice-Hall, Englewood Cliffs
go back to reference Cameron D, Kneale P, See L (2002) An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment. Hydrol Process 16:1033–1046CrossRef Cameron D, Kneale P, See L (2002) An evaluation of a traditional and a neural net modelling approach to flood forecasting for an upland catchment. Hydrol Process 16:1033–1046CrossRef
go back to reference Charalambous C (1992) Conjugate gradient algorithm for efficient training of artificial neural networks. IEEE Proc 139(3):301–310CrossRef Charalambous C (1992) Conjugate gradient algorithm for efficient training of artificial neural networks. IEEE Proc 139(3):301–310CrossRef
go back to reference Chiang YM, Chang LC, Chang FJ (2004) Comparison of static feed forward and dynamic-feedback ward neural networks for rainfall–runoff modeling. J Hydrol 290:297–311CrossRef Chiang YM, Chang LC, Chang FJ (2004) Comparison of static feed forward and dynamic-feedback ward neural networks for rainfall–runoff modeling. J Hydrol 290:297–311CrossRef
go back to reference Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2) Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2)
go back to reference Demuth HB, Beale MH, Hagan MT (2009) Neural network toolbox TM 6. User’s guide. The MathWorks Inc., Natick Demuth HB, Beale MH, Hagan MT (2009) Neural network toolbox TM 6. User’s guide. The MathWorks Inc., Natick
go back to reference Dennis JE, Schnabel RB (1983) Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall, Englewood Cliffs Dennis JE, Schnabel RB (1983) Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall, Englewood Cliffs
go back to reference Doorenbos J, Kassam AH (1979) Yield response to water. FAO Irrigation and Drainage Paper 33, FAO, Rome Doorenbos J, Kassam AH (1979) Yield response to water. FAO Irrigation and Drainage Paper 33, FAO, Rome
go back to reference Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Paper 24, FAO, Rome Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Paper 24, FAO, Rome
go back to reference Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7:149–154CrossRef Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7:149–154CrossRef
go back to reference French MN, Krajewski WF, Cuykendall RR (1992) Rainfall forecasting in space and time using a neural network. J Hydrol 137:1–31CrossRef French MN, Krajewski WF, Cuykendall RR (1992) Rainfall forecasting in space and time using a neural network. J Hydrol 137:1–31CrossRef
go back to reference Hagan MT, Menhaj M (1994) Training feed-forward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993CrossRef Hagan MT, Menhaj M (1994) Training feed-forward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993CrossRef
go back to reference Hagan MT, Demuth HB, Beale MH (1996) Neural network design. PWS Publishing, Boston Hagan MT, Demuth HB, Beale MH (1996) Neural network design. PWS Publishing, Boston
go back to reference Hsu K, Gupta HV, Sorooshian S (1995) Artificial neural network modeling of the rainfall–runoff process. Water Resour Res 31(10):2517–2530CrossRef Hsu K, Gupta HV, Sorooshian S (1995) Artificial neural network modeling of the rainfall–runoff process. Water Resour Res 31(10):2517–2530CrossRef
go back to reference Kuligowski RJ, Barros AP (1998) Experiments in short-term precipitation forecasting using artificial neural networks. Mon Weather Rev 126(2):470–482CrossRef Kuligowski RJ, Barros AP (1998) Experiments in short-term precipitation forecasting using artificial neural networks. Mon Weather Rev 126(2):470–482CrossRef
go back to reference Lorrai M, Sechi GM (1995) Neural nets for modelling rainfall– runoff transformations. Water Resour Manag 9:299–313CrossRef Lorrai M, Sechi GM (1995) Neural nets for modelling rainfall– runoff transformations. Water Resour Manag 9:299–313CrossRef
go back to reference Mason JC, Temme A, Price RK (1996) A neural network model of rainfall–runoff using radial basis functions. J Hydraul Res 34(4):537–548CrossRef Mason JC, Temme A, Price RK (1996) A neural network model of rainfall–runoff using radial basis functions. J Hydraul Res 34(4):537–548CrossRef
go back to reference Moller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6:525–533CrossRef Moller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6:525–533CrossRef
go back to reference Moradkhani H, Hsu K, Gupta HV, Sorooshian S (2004) Improved stream flow forecasting using self-organizing radial basis function artificial neural networks. J Hydrol 295:246–262CrossRef Moradkhani H, Hsu K, Gupta HV, Sorooshian S (2004) Improved stream flow forecasting using self-organizing radial basis function artificial neural networks. J Hydrol 295:246–262CrossRef
go back to reference Nayebi M, Khalili D, Amin S, Zand-Parsa S (2006) Daily stream flow prediction capability of artificial neural networks as influenced by minimum air temperature data. Biosyst Eng 95(4):557–567CrossRef Nayebi M, Khalili D, Amin S, Zand-Parsa S (2006) Daily stream flow prediction capability of artificial neural networks as influenced by minimum air temperature data. Biosyst Eng 95(4):557–567CrossRef
go back to reference Ondimu S, Murase H (2007) Reservoir level forecasting using neural networks: lake Naivasha. Biosyst Eng 96(1):135–138CrossRef Ondimu S, Murase H (2007) Reservoir level forecasting using neural networks: lake Naivasha. Biosyst Eng 96(1):135–138CrossRef
go back to reference Playan E, Mateos L (2006) Modernization and optimization of irrigation systems to increase water productivity. Agric Water Manag 80:100–116CrossRef Playan E, Mateos L (2006) Modernization and optimization of irrigation systems to increase water productivity. Agric Water Manag 80:100–116CrossRef
go back to reference Poff LN, Tokar AS, Johnson PA (1996) Stream hydrological and ecological responses to climate change assessed with an artificial neural network. Limnol Oceanogr 41(5):857–863CrossRef Poff LN, Tokar AS, Johnson PA (1996) Stream hydrological and ecological responses to climate change assessed with an artificial neural network. Limnol Oceanogr 41(5):857–863CrossRef
go back to reference Powell MJD (1977) Restart procedures for the conjugate gradient method. Math Program 12:241–254CrossRef Powell MJD (1977) Restart procedures for the conjugate gradient method. Math Program 12:241–254CrossRef
go back to reference Pratap R (2010) Getting started with Matlab. A quick introduction for scientist and engineers. Oxford University Press, USA Pratap R (2010) Getting started with Matlab. A quick introduction for scientist and engineers. Oxford University Press, USA
go back to reference Pulido-Calvo I, Gutiérrez-Estrada JC (2009) Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosyst Eng 102(1):202–218CrossRef Pulido-Calvo I, Gutiérrez-Estrada JC (2009) Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosyst Eng 102(1):202–218CrossRef
go back to reference Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: The RPROP algorithm. Proc IEEE Int Conf Neural Netw Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: The RPROP algorithm. Proc IEEE Int Conf Neural Netw
go back to reference Roger LL, Dowla FU (1994) Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resour Res 30(2):457–481CrossRef Roger LL, Dowla FU (1994) Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resour Res 30(2):457–481CrossRef
go back to reference Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back propagation errors. Nature 323(9):533–536CrossRef Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back propagation errors. Nature 323(9):533–536CrossRef
go back to reference Scales LE (1985) Introduction to non-linear optimization. Springer, New York Scales LE (1985) Introduction to non-linear optimization. Springer, New York
go back to reference See L, Openshaw S (2000) A hybrid multi-model approach to river level forecasting. Hydrol Sci J 45(4):523–536CrossRef See L, Openshaw S (2000) A hybrid multi-model approach to river level forecasting. Hydrol Sci J 45(4):523–536CrossRef
go back to reference Shin HS, Salas JD (2000) Regional drought analysis based on neural networks. J Hydrol Eng 5(2):145–155CrossRef Shin HS, Salas JD (2000) Regional drought analysis based on neural networks. J Hydrol Eng 5(2):145–155CrossRef
go back to reference Thirumalaiah K, Deo MC (1998) River stage forecasting using artificial neural networks. J Hydrol Eng 3(1):26–32CrossRef Thirumalaiah K, Deo MC (1998) River stage forecasting using artificial neural networks. J Hydrol Eng 3(1):26–32CrossRef
go back to reference Thirumalaiah K, Deo MC (2000) Hydrological forecasting using neural networks. J Hydrol Eng 5(2):180–189CrossRef Thirumalaiah K, Deo MC (2000) Hydrological forecasting using neural networks. J Hydrol Eng 5(2):180–189CrossRef
go back to reference Tokar AS, Johnson PA (1999) Rainfall–runoff modeling using artificial neural networks. J Hydrol Eng 4(3):232–239CrossRef Tokar AS, Johnson PA (1999) Rainfall–runoff modeling using artificial neural networks. J Hydrol Eng 4(3):232–239CrossRef
go back to reference Tokar AS, Markus M (2000) Precipitation–runoff modeling using artificial neural networks and conceptual models. J Hydrol Eng 5(2):156–161CrossRef Tokar AS, Markus M (2000) Precipitation–runoff modeling using artificial neural networks and conceptual models. J Hydrol Eng 5(2):156–161CrossRef
go back to reference Van Aelst PV, Ragab RA, Feyen J, Raes D (1988) Improving irrigation management by modelling the irrigation schedule. Agric Water Manag 13:113–125CrossRef Van Aelst PV, Ragab RA, Feyen J, Raes D (1988) Improving irrigation management by modelling the irrigation schedule. Agric Water Manag 13:113–125CrossRef
go back to reference Ventura S, Silva M, Pérez-Bendito D, Hervás C (1995) Artificial neural networks for estimation of kinetic analytical parameters. Anal Chem 67(9):1521–1525CrossRef Ventura S, Silva M, Pérez-Bendito D, Hervás C (1995) Artificial neural networks for estimation of kinetic analytical parameters. Anal Chem 67(9):1521–1525CrossRef
go back to reference Yang CC, Prasher SO, Lacroix R, Sreekanth S, Patni NK, Masse L (1997) Artificial neural network model for subsurface-drained farmland. J Irrig Drain Eng 123(4):285–292CrossRef Yang CC, Prasher SO, Lacroix R, Sreekanth S, Patni NK, Masse L (1997) Artificial neural network model for subsurface-drained farmland. J Irrig Drain Eng 123(4):285–292CrossRef
go back to reference Zhang M, Fulcher J, Scofield RA (1997) Rainfall estimation using artificial neural network group. Neurocomputing 16:97–115CrossRef Zhang M, Fulcher J, Scofield RA (1997) Rainfall estimation using artificial neural network group. Neurocomputing 16:97–115CrossRef
Metadata
Title
Irrigation Demand Forecasting Using Artificial Neuro-Genetic Networks
Authors
R. González Perea
E. Camacho Poyato
P. Montesinos
J. A. Rodríguez Díaz
Publication date
01-12-2015
Publisher
Springer Netherlands
Published in
Water Resources Management / Issue 15/2015
Print ISSN: 0920-4741
Electronic ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-015-1134-4

Other articles of this Issue 15/2015

Water Resources Management 15/2015 Go to the issue