Skip to main content
Top

2021 | OriginalPaper | Chapter

Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling

Authors : Yen-Chen Liu, Jethro Nagawkar, Leifur Leifsson, Slawomir Koziel, Anna Pietrenko-Dabrowska

Published in: Computational Science – ICCS 2021

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Global sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based model in this work. This introduces the additional challenge of finding the minimum number of training data samples required to train the NNs accurately. In this work, a new method is introduced to accurately quantify the GSA values by iterating over both the number of samples required to train the NNs, terminated using an outer-loop sensitivity convergence criteria, and the number of model responses required to calculate the GSA, terminated with an inner-loop sensitivity convergence criteria. The iterative surrogate-based GSA guarantees converged values for the Sobol’ indices and, at the same time, alleviates the specification of arbitrary accuracy metrics for the surrogate model. The proposed method is demonstrated in two cases, namely, an eight-variable borehole function and a three-variable nondestructive testing (NDT) case. For the borehole function, both the first- and total-order Sobol’ indices required 200 and \(10^5\) data points to terminate on the outer- and inner-loop sensitivity convergence criteria, respectively. For the NDT case, these values were 100 for both first- and total-order indices for the outer-loop sensitivity convergence, and \(10^6\) and \(10^3\) for the inner-loop sensitivity convergence, respectively, for the first- and total-order indices, on the inner-loop sensitivity convergence. The differences of the proposed method with GSA on the true functions are less than 3% in the analytical case and less than 10% in the physics-based case (where the large error comes from small Sobol’ indices).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Iooss, B., Saltelli, A.: Introduction to Sensitivity Analysis. Springer, Cham (2015)CrossRef Iooss, B., Saltelli, A.: Introduction to Sensitivity Analysis. Springer, Cham (2015)CrossRef
3.
go back to reference Sobol’, I., Kucherekoand, S.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exper. 1, 407–414 (1993)MathSciNetMATH Sobol’, I., Kucherekoand, S.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exper. 1, 407–414 (1993)MathSciNetMATH
4.
go back to reference Sobol’, I.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)MathSciNetCrossRef Sobol’, I.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)MathSciNetCrossRef
5.
go back to reference Zhou, X., Lin, H.: Local Sensitivity Analysis. Encyclopedia of GIS, pp. 1116–1119 (2017) Zhou, X., Lin, H.: Local Sensitivity Analysis. Encyclopedia of GIS, pp. 1116–1119 (2017)
6.
go back to reference Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52, 1–17 (1996)CrossRef Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52, 1–17 (1996)CrossRef
9.
go back to reference Krige, D.G.: A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metallurgical Min. Eng. Soc. South Africa 52(6), 119–139 (1951) Krige, D.G.: A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metallurgical Min. Eng. Soc. South Africa 52(6), 119–139 (1951)
10.
go back to reference Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Cambridge (2016)MATH Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Cambridge (2016)MATH
11.
go back to reference Li, D., Wilson, P.A., Jiong, Z.: An improved support vector regression and its modelling of Manoeuvring performance in multidisciplinary ship design optimization. Int. J. Model. Simul. 35, 122–128 (2015)CrossRef Li, D., Wilson, P.A., Jiong, Z.: An improved support vector regression and its modelling of Manoeuvring performance in multidisciplinary ship design optimization. Int. J. Model. Simul. 35, 122–128 (2015)CrossRef
14.
go back to reference McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)MathSciNetMATH McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)MathSciNetMATH
15.
go back to reference Haykin, S.S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, Upper Saddle River (2009) Haykin, S.S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, Upper Saddle River (2009)
18.
go back to reference Chauvin, Y., Rumelhart, D.E.: Backpropagation: Theory, Architectures, and Applications. Psychology Press, Hillsdale (1995) Chauvin, Y., Rumelhart, D.E.: Backpropagation: Theory, Architectures, and Applications. Psychology Press, Hillsdale (1995)
19.
go back to reference Harper, W.V., Gupta, K.S.: Sensitivity/uncertainty analysis of a borehole scenario comparing Latin Hypercube Sampling and deterministic sensitivity approaches. Technical report, Office of Nuclear Waste Isolation, Columbus, OH (1983) Harper, W.V., Gupta, K.S.: Sensitivity/uncertainty analysis of a borehole scenario comparing Latin Hypercube Sampling and deterministic sensitivity approaches. Technical report, Office of Nuclear Waste Isolation, Columbus, OH (1983)
20.
go back to reference Gurrala, P., Chen, K., Song, J., Roberts, R.: Full wave modeling of ultrasonic NDE benchmark problems using Nystrom method. Rev. Progress Quant. Nondestruct. Eval. 36(1), 1–8 (2017) Gurrala, P., Chen, K., Song, J., Roberts, R.: Full wave modeling of ultrasonic NDE benchmark problems using Nystrom method. Rev. Progress Quant. Nondestruct. Eval. 36(1), 1–8 (2017)
22.
go back to reference Wen, J.J., Breazeale, M.A.: A diffraction beam field expressed as the superposition of Gaussian beams. J. Acoust. Soc. Am. 83, 1752–1756 (1988)CrossRef Wen, J.J., Breazeale, M.A.: A diffraction beam field expressed as the superposition of Gaussian beams. J. Acoust. Soc. Am. 83, 1752–1756 (1988)CrossRef
24.
go back to reference Du, X., Leifsson, L., Meeker, W., Gurrala, P., Song, J., Roberts, R.: Efficient model-assisted probability of detection and sensitivity analysis for ultrasonic testing simulations using stochastic metamodeling. J. Nondestruct. Eval. Diagnost. Prognost. Eng. Syst. 2(4), 041002(4) (2019). https://doi.org/10.1115/1.4044446 Du, X., Leifsson, L., Meeker, W., Gurrala, P., Song, J., Roberts, R.: Efficient model-assisted probability of detection and sensitivity analysis for ultrasonic testing simulations using stochastic metamodeling. J. Nondestruct. Eval. Diagnost. Prognost. Eng. Syst. 2(4), 041002(4) (2019). https://​doi.​org/​10.​1115/​1.​4044446
Metadata
Title
Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling
Authors
Yen-Chen Liu
Jethro Nagawkar
Leifur Leifsson
Slawomir Koziel
Anna Pietrenko-Dabrowska
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-77970-2_23

Premium Partner