Skip to main content
Top

2016 | OriginalPaper | Chapter

Key Design Considerations

Authors : James Nichols, Knut O. Ronold, Anne Lene Hopstad

Published in: Floating Offshore Wind Energy

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Floating offshore wind turbines are exposed to varied combinations of environmental loads. The theories behind how the different environmental forces cause loading on the wind turbine have been covered in Chapter “Modelling of Floating Offshore Wind Technologies”; Sect. 1 of this Chapter addresses the combinations of environmental situations which need to be investigated when designing a floating wind system as well as how they are transferred into design fatigue and extreme loads.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bayati I, Jonkman J, Robertson A, Platt A (2014) The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine. J Phys Conf Ser 524 (The Science of Making Torque from Wind) Bayati I, Jonkman J, Robertson A, Platt A (2014) The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine. J Phys Conf Ser 524 (The Science of Making Torque from Wind)
go back to reference Burton T, Jenkins N, Sharpe D, Bossanyi E (2011) Wind energy handbook, 2nd edn. Wiley, ChichesterCrossRef Burton T, Jenkins N, Sharpe D, Bossanyi E (2011) Wind energy handbook, 2nd edn. Wiley, ChichesterCrossRef
go back to reference DNV-OS-J101 (2011) Design of offshore wind turbine structures. Det Norske Veritas (DNV), Høvik, Norway DNV-OS-J101 (2011) Design of offshore wind turbine structures. Det Norske Veritas (DNV), Høvik, Norway
go back to reference DNV-OS-J103 (2013) Design of floating wind turbine structures. Det Norske Veritas (DNV), Høvik, Norway DNV-OS-J103 (2013) Design of floating wind turbine structures. Det Norske Veritas (DNV), Høvik, Norway
go back to reference Duarte T, Sarmento AJNA (2014) Effects of second-order hydrodynamic forces on floating offshore wind turbines. In: Proceedings of the AIAA SciTech 2014 National Harbor, Maryland, 13–17 Jan 2014 Duarte T, Sarmento AJNA (2014) Effects of second-order hydrodynamic forces on floating offshore wind turbines. In: Proceedings of the AIAA SciTech 2014 National Harbor, Maryland, 13–17 Jan 2014
go back to reference GL-IV-2 (2012) Guideline for the certification of offshore wind turbines, edition 2012. Germanischer Lloyd, Hamburg, Germany GL-IV-2 (2012) Guideline for the certification of offshore wind turbines, edition 2012. Germanischer Lloyd, Hamburg, Germany
go back to reference Hansen MH (2007) Aeroelastic instability problems for wind turbines. Wind Energy 10(6):551–577CrossRef Hansen MH (2007) Aeroelastic instability problems for wind turbines. Wind Energy 10(6):551–577CrossRef
go back to reference IEC 61400-1 (2005) Wind turbines—part 1: design requirements. International Electrotechnical Commission (IEC), Geneva, Switzerland IEC 61400-1 (2005) Wind turbines—part 1: design requirements. International Electrotechnical Commission (IEC), Geneva, Switzerland
go back to reference IEC 61400-3 (2009) Wind turbines - part 3: design requirements for offshore wind turbines. International Electrotechnical Commission (IEC), Geneva, Switzerland IEC 61400-3 (2009) Wind turbines - part 3: design requirements for offshore wind turbines. International Electrotechnical Commission (IEC), Geneva, Switzerland
go back to reference ISO 19901-4 (2003) Petroleum and natural gas industries—specific requirements for offshore structures—part 3: geotechnical and foundation design considerations. International Organization for Standardization (ISO), Geneva, Switzerland ISO 19901-4 (2003) Petroleum and natural gas industries—specific requirements for offshore structures—part 3: geotechnical and foundation design considerations. International Organization for Standardization (ISO), Geneva, Switzerland
go back to reference ISO 19904-1 (2006) Petroleum and natural gas industries - floating offshore structures and mobile offshore units. International Organization for Standardization (ISO), Geneva, Switzerland ISO 19904-1 (2006) Petroleum and natural gas industries - floating offshore structures and mobile offshore units. International Organization for Standardization (ISO), Geneva, Switzerland
go back to reference ISO 19906 (2010) Petroleum and natural gas industries—Arctic offshore structures. International Organization for Standardization (ISO), Geneva, Switzerland ISO 19906 (2010) Petroleum and natural gas industries—Arctic offshore structures. International Organization for Standardization (ISO), Geneva, Switzerland
go back to reference Jonkman J (2007) Dynamics modeling and loads analysis of an offshore floating wind turbine. NREL/TP-500-41958, National Renewable Energy Laboratory (NREL), Golden, CO, USA, Nov 2007 Jonkman J (2007) Dynamics modeling and loads analysis of an offshore floating wind turbine. NREL/TP-500-41958, National Renewable Energy Laboratory (NREL), Golden, CO, USA, Nov 2007
go back to reference Jussila V, Popko P, Heinonen J (2013) Interfacing of ice load simulation tools for cylindrical and conical structure with one wind simulation tool for offshore wind turbines. In: Proceedings of the 22nd international conference on port and ocean engineering under arctic conditions, Espoo, Finland, 9–13 June 2013 Jussila V, Popko P, Heinonen J (2013) Interfacing of ice load simulation tools for cylindrical and conical structure with one wind simulation tool for offshore wind turbines. In: Proceedings of the 22nd international conference on port and ocean engineering under arctic conditions, Espoo, Finland, 9–13 June 2013
go back to reference Larsen TJ, Hanson TD (2007) A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine. J Phys Conf Series (Online) 75:11 Larsen TJ, Hanson TD (2007) A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine. J Phys Conf Series (Online) 75:11
go back to reference Larsen GC, Madsen HA, Thomsen K, Larsen TJ (2008) Wake meandering—a pragmatic approach. Wind Energy 11:377–395CrossRef Larsen GC, Madsen HA, Thomsen K, Larsen TJ (2008) Wake meandering—a pragmatic approach. Wind Energy 11:377–395CrossRef
go back to reference Lupton RC (2014) Characterising dynamic non-linearity in floating wind turbines. J Phys Conf Ser 555:012064CrossRef Lupton RC (2014) Characterising dynamic non-linearity in floating wind turbines. J Phys Conf Ser 555:012064CrossRef
go back to reference Mann J (2001) Extreme gusts over the coastal waters of Denmark. In: Proceedings of the european wind energy conference (EWEC), Copenhagen, Denmark, 2–7 July 2001 Mann J (2001) Extreme gusts over the coastal waters of Denmark. In: Proceedings of the european wind energy conference (EWEC), Copenhagen, Denmark, 2–7 July 2001
go back to reference Matha D, Sandner F, Schlipf D (2014) Efficient critical design load case identification for floating offshore wind turbines with a reduced nonlinear model. J Phys Conf Ser 555:012069CrossRef Matha D, Sandner F, Schlipf D (2014) Efficient critical design load case identification for floating offshore wind turbines with a reduced nonlinear model. J Phys Conf Ser 555:012069CrossRef
go back to reference Meulepas K (2014) Hywind Scotland—developing the UK’s first floating wind park. In: Proceedings of the all energy 2014, Aberdeen, UK, 21–22 May 2014 Meulepas K (2014) Hywind Scotland—developing the UK’s first floating wind park. In: Proceedings of the all energy 2014, Aberdeen, UK, 21–22 May 2014
go back to reference Stewart G, Lackner M, Haid L et al (2013) Assessing fatigue and ultimate load uncertainty in floating offshore wind turbines due to varying simulation length. In: Proceedings of the 11th international conference on structural safety and reliability, New York, 16–20 June 2013 Stewart G, Lackner M, Haid L et al (2013) Assessing fatigue and ultimate load uncertainty in floating offshore wind turbines due to varying simulation length. In: Proceedings of the 11th international conference on structural safety and reliability, New York, 16–20 June 2013
go back to reference Veldkamp HF (2006) Chances in wind energy a probabilistic approach to wind turbine fatigue design. Dissertation, Delft Technical University Veldkamp HF (2006) Chances in wind energy a probabilistic approach to wind turbine fatigue design. Dissertation, Delft Technical University
go back to reference Wienke J (2001) Druckschlagbelastung auf schlanke zylindrische Bauwerke durch brechende Welen—theoretische und großmaßstäbliche Laboruntersuchungen. Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig Wienke J (2001) Druckschlagbelastung auf schlanke zylindrische Bauwerke durch brechende Welen—theoretische und großmaßstäbliche Laboruntersuchungen. Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig
go back to reference American Bureau of Shipping (2013) Guide for building and classing floating offshore wind turbine installations. ABS Guideline #195, Houston American Bureau of Shipping (2013) Guide for building and classing floating offshore wind turbine installations. ABS Guideline #195, Houston
go back to reference DNV-OS-J101 (2014) Design of offshore wind turbine structures. Det Norske Veritas, Høvik, Norway DNV-OS-J101 (2014) Design of offshore wind turbine structures. Det Norske Veritas, Høvik, Norway
go back to reference DNV-OS-J103 (2013) Design of floating wind turbine structures. Det Norske Veritas, Høvik, Norway DNV-OS-J103 (2013) Design of floating wind turbine structures. Det Norske Veritas, Høvik, Norway
go back to reference DNV GL (2014) Project certification of wind farms according to IEC 61400-22. DNVGL-SE-0073, Høvik, Norway DNV GL (2014) Project certification of wind farms according to IEC 61400-22. DNVGL-SE-0073, Høvik, Norway
go back to reference GL-IV-2 (2012) Guideline for the certification of offshore wind turbines, edition 2012. Germanischer Lloyd, Hamburg, Germany GL-IV-2 (2012) Guideline for the certification of offshore wind turbines, edition 2012. Germanischer Lloyd, Hamburg, Germany
go back to reference IEC 61400-3 (2009) Wind turbines—part 3: design requirements for offshore wind turbines. International Electrotechnical Commission, Geneva, Switzerland IEC 61400-3 (2009) Wind turbines—part 3: design requirements for offshore wind turbines. International Electrotechnical Commission, Geneva, Switzerland
go back to reference IEC 61400-22 (2010) Wind turbines—part 22: conformity testing and certification. International Electrotechnical Commission, Geneva, Switzerland IEC 61400-22 (2010) Wind turbines—part 22: conformity testing and certification. International Electrotechnical Commission, Geneva, Switzerland
go back to reference Nippon Kaiji Kyokai (2012) Guidelines for offshore floating wind turbine structures, 1st edn. Class NK, Tokyo Nippon Kaiji Kyokai (2012) Guidelines for offshore floating wind turbine structures, 1st edn. Class NK, Tokyo
go back to reference Skaare B, Hanson TD, Nielsen FG (2007) Importance of control strategies on fatigue life of floating wind turbines. In: Proceedings of the 26th international conference on offshore mechanics and ocean engineering (OMAE), San Diego, 10–15 June 2007 Skaare B, Hanson TD, Nielsen FG (2007) Importance of control strategies on fatigue life of floating wind turbines. In: Proceedings of the 26th international conference on offshore mechanics and ocean engineering (OMAE), San Diego, 10–15 June 2007
Metadata
Title
Key Design Considerations
Authors
James Nichols
Knut O. Ronold
Anne Lene Hopstad
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-29398-1_5