Skip to main content
Top

2018 | OriginalPaper | Chapter

Kinematic-Dynamic Analysis of the Cam-Worm Mechanism for Humanoid Robots Shrug

Authors : M. Penčić, M. Čavić, M. Rackov, B. Borovac, Z. Lu

Published in: New Advances in Mechanism and Machine Science

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Having in mind that humans use non-verbal communication extensively is very important to enable social robots with this capacity. There are two basic ways how it can be expressed. First one is by facial expressions by appropriate moving face parts, like eyebrows, eyeballs, eyelids, lips, either as manufactured real parts or by presenting them on screen—combining them is also possible. The second way of non-verbal communication is by gestures. This paper presents the kinematic-dynamic analysis of shrug mechanism for humanoid robots. Based on the set requirements, the cam-worm mechanism that has 1 DOF and enables the simultaneous shrug of both shoulders is proposed. It consists of a worm which is meshed with two worm gears whose directions of rotation are opposite and the two cam mechanisms whose input links—cams, are rigidly attached to the worm gears. Within the kinematic-dynamic analysis, the cam profile and the worm parameters are defined and the torque on the cam/worm gear and the driving torque of the complete cam-worm mechanism are determined. The cam mechanism has a high efficiency in all positions because the values of the pressure angle are within the prescribed ones during the entire movement. Worm mechanism enables a significant reduction of the driving torque and has acceptable efficiency. The rotation range of worm gear/cam is small and the movement of mechanism is very fast wherefore the shrug speed is large, which was one of the main requirement for realization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bazo D et al (2010) Design and testing of a hybrid expressive face for a humanoid robot. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), Taipei, pp 5317–5322 Bazo D et al (2010) Design and testing of a hybrid expressive face for a humanoid robot. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), Taipei, pp 5317–5322
2.
go back to reference Breazeal C (2013) Toward sociable robots. Robot Auton Syst 42(3–4):167–175MATH Breazeal C (2013) Toward sociable robots. Robot Auton Syst 42(3–4):167–175MATH
3.
go back to reference Breazeal C (2003) Emotion and sociable humanoid robots. Int J Hum Comput Stud 59(1–2):119–155CrossRef Breazeal C (2003) Emotion and sociable humanoid robots. Int J Hum Comput Stud 59(1–2):119–155CrossRef
4.
go back to reference Itoh K et al (2006) Mechanical design of emotion expression humanoid robot WE-4RII. In: Zielinska T et al (eds) ROMANSY 16: robot design, dynamics and control, vol 487. CISM, Springer, pp 255–262 Itoh K et al (2006) Mechanical design of emotion expression humanoid robot WE-4RII. In: Zielinska T et al (eds) ROMANSY 16: robot design, dynamics and control, vol 487. CISM, Springer, pp 255–262
5.
go back to reference Knapp ML et al (2014) Nonverbal communication in human interaction. Cengage Learning, Boston, MA Knapp ML et al (2014) Nonverbal communication in human interaction. Cengage Learning, Boston, MA
6.
go back to reference Knox WB et al (2013) Training a robot via human feedback: a case study. In: Herrmann G et al. (eds.) Social robotics: ICSR 2013, vol 8239. LNCS, Springer, pp 460–470 Knox WB et al (2013) Training a robot via human feedback: a case study. In: Herrmann G et al. (eds.) Social robotics: ICSR 2013, vol 8239. LNCS, Springer, pp 460–470
7.
go back to reference Lehmann H et al (2016) Head and face design for a new humanoid service robot. In: Agah A et al (eds) Social robotics: ICSR 2016, vol 9979. LNCS, Springer, pp 382–391 Lehmann H et al (2016) Head and face design for a new humanoid service robot. In: Agah A et al (eds) Social robotics: ICSR 2016, vol 9979. LNCS, Springer, pp 382–391
8.
go back to reference Lutkebohle I et al (2010) The bielefeld anthropomorphic robot head “Flobi”. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), Anchorage, pp 3384–3391 Lutkebohle I et al (2010) The bielefeld anthropomorphic robot head “Flobi”. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), Anchorage, pp 3384–3391
9.
go back to reference Mehrabian A (1981) Silent messages: implicit communication of emotions and attitudes. Wadsworth, Belmont, CA Mehrabian A (1981) Silent messages: implicit communication of emotions and attitudes. Wadsworth, Belmont, CA
10.
go back to reference Metta G et al (2010) The iCub humanoid robot: an open-systems platform for research in cognitive development. Neural Netw 23(8–9):1125–1134CrossRef Metta G et al (2010) The iCub humanoid robot: an open-systems platform for research in cognitive development. Neural Netw 23(8–9):1125–1134CrossRef
11.
go back to reference Miltenović, V (2009) Machine elements—forms, calculation and application (in Serbian), University of Niš, Faculty of Mechanical Engineering, Niš Miltenović, V (2009) Machine elements—forms, calculation and application (in Serbian), University of Niš, Faculty of Mechanical Engineering, Niš
12.
go back to reference Park I-W et al (2008) Control hardware integration of a biped humanoid robot with an android head. Robot Auton Syst 56(1):95–103 Park I-W et al (2008) Control hardware integration of a biped humanoid robot with an android head. Robot Auton Syst 56(1):95–103
13.
go back to reference Penčić M et al (2016) Analysis of mechanisms for achieving different ways of power transmission and motion of the anthropomorphic robots upper body. In: Proceedings of the international conference on power transmission (BAPT), Ohrid, pp 115–122 Penčić M et al (2016) Analysis of mechanisms for achieving different ways of power transmission and motion of the anthropomorphic robots upper body. In: Proceedings of the international conference on power transmission (BAPT), Ohrid, pp 115–122
14.
go back to reference Penčić M et al (2016) Development of the multi-segment lumbar spine for humanoid robots. Therm Sci 20(Suppl. 2):S581–S590CrossRef Penčić M et al (2016) Development of the multi-segment lumbar spine for humanoid robots. Therm Sci 20(Suppl. 2):S581–S590CrossRef
15.
go back to reference Penčić M et al (2016) Comparative analysis of the shrug mechanisms for humanoid robots. In: Proceedings of the international conference on electrical, electronic and computing engineering (IcETRAN), Zlatibor, pp ROI1.3-1–ROI1.3-5 Penčić M et al (2016) Comparative analysis of the shrug mechanisms for humanoid robots. In: Proceedings of the international conference on electrical, electronic and computing engineering (IcETRAN), Zlatibor, pp ROI1.3-1–ROI1.3-5
16.
go back to reference Penčić M et al (2016) Comparative synthesis of the shrug mechanisms for humanoid robots. In Proceedings of the international research/expert conference on trends in the development of machinery and associated technology (TMT), Mediterranean Sea Cruising, pp 249–252 Penčić M et al (2016) Comparative synthesis of the shrug mechanisms for humanoid robots. In Proceedings of the international research/expert conference on trends in the development of machinery and associated technology (TMT), Mediterranean Sea Cruising, pp 249–252
17.
go back to reference Penčić M et al (2017) Optimal synthesis of the worm-lever mechanism for humanoid robots shrug. Serb J Electr Eng 14(2):245–256CrossRef Penčić M et al (2017) Optimal synthesis of the worm-lever mechanism for humanoid robots shrug. Serb J Electr Eng 14(2):245–256CrossRef
18.
go back to reference Penčić M et al (2017) Development of the low backlash planetary gearbox for humanoid robots. FME Trans 45(1):122–129 Penčić M et al (2017) Development of the low backlash planetary gearbox for humanoid robots. FME Trans 45(1):122–129
19.
go back to reference Saldien J et al (2010) Expressing emotions with the social robot Probo. Int J Soc Robot 2(4):377–389CrossRef Saldien J et al (2010) Expressing emotions with the social robot Probo. Int J Soc Robot 2(4):377–389CrossRef
20.
go back to reference Sosnowski S et al (2006) Design and evaluation of emotion-display EDDIE. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), Beijing, pp 3113–3118 Sosnowski S et al (2006) Design and evaluation of emotion-display EDDIE. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), Beijing, pp 3113–3118
21.
go back to reference Spexard TP et al (2007) Human-oriented interaction with an anthropomorphic robot. IEEE Trans Rob 23(5):852–862CrossRef Spexard TP et al (2007) Human-oriented interaction with an anthropomorphic robot. IEEE Trans Rob 23(5):852–862CrossRef
22.
go back to reference Trovato G et al (2013) Generation of humanoid robot’s facial expressions for context-aware communication. Int J Humanoid Robot 10(1):1350013-1–1350013-23 Trovato G et al (2013) Generation of humanoid robot’s facial expressions for context-aware communication. Int J Humanoid Robot 10(1):1350013-1–1350013-23
23.
go back to reference van Breemen AJN (2004) Animation engine for believable interactive user-interface robots. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), Sendai, pp 2873–2878 van Breemen AJN (2004) Animation engine for believable interactive user-interface robots. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), Sendai, pp 2873–2878
24.
go back to reference Zecca M et al (2009) Whole body emotion expressions for KOBIAN humanoid robot—preliminary experiments with different emotional patterns. In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Toyama, pp 381–386 Zecca M et al (2009) Whole body emotion expressions for KOBIAN humanoid robot—preliminary experiments with different emotional patterns. In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Toyama, pp 381–386
Metadata
Title
Kinematic-Dynamic Analysis of the Cam-Worm Mechanism for Humanoid Robots Shrug
Authors
M. Penčić
M. Čavić
M. Rackov
B. Borovac
Z. Lu
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-79111-1_4

Premium Partners