Skip to main content
Top
Published in: Flow, Turbulence and Combustion 3/2017

16-12-2016

Large Eddy Simulation of Turbulent Premixed Swirling Flames Using Dynamic Thickened Flame with Tabulated Detailed Chemistry

Authors: Hongda Zhang, Taohong Ye, Gaofeng Wang, Peng Tang, Minghou Liu

Published in: Flow, Turbulence and Combustion | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A sub-grid scale (SGS) combustion model by combining dynamic thickened flame (DTF) with flamelet generated manifolds (FGM) tabulation approach (i.e. DTF-FGM) is developed for investigating turbulent premixed combustion. In contrast to the thickened flame model, the dynamic thickening factor of the DTF model is determined from the flame sensor, which is obtained from the normalized gradient of the reaction progress variable from the one-dimensional freely propagating premixed flame simulations. Therewith the DTF model can ensure that the thickening of the flame is limited to the regions where it is numerically necessary. To describe the thermo-chemistry states, large eddy simulation (LES) transport equations for two characteristic scalars (the mixture fraction and the reaction progress variable) and relevant sub-grid variances in the DTF-FGM model are presented. As to the evaluation of different SGS combustion models, another model by utilizing the combination of presumed probability density function (PPDF) and FGM (i.e. PPDF-FGM) is also described. LES of two cases with or without swirl in premixed regime of the Cambridge swirl burner flames are performed to evaluate the developed SGS combustion model. The predicted results are compared with the experimental data in terms of the influence of different LES grids, model sensitivities to the thickening factor, the wrinkling factor, and the PPDF of characteristic scalars, the evaluation of different modelling approaches for the sub-grid variances of characteristic scalars, and the predictive capability of different SGS combustion models. It is shown that the LES results with the DTF-FGM model are in reasonable agreement with the experimental data, and better than the results with the PPDF-FGM approach due to its ability to predict better in regions where flame is not resolved.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
3.
go back to reference Pitsch, H.: A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combust. Flame 143(4), 587–598 (2005)CrossRef Pitsch, H.: A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combust. Flame 143(4), 587–598 (2005)CrossRef
4.
go back to reference Moureau, V., Fiorina, B., Pitsch, H.: A level set formulation for premixed combustion LES considering the turbulent flame structure. Combust. Flame 156(4), 801–812 (2009)CrossRef Moureau, V., Fiorina, B., Pitsch, H.: A level set formulation for premixed combustion LES considering the turbulent flame structure. Combust. Flame 156(4), 801–812 (2009)CrossRef
5.
go back to reference Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. In: Symposium (International) on Combustion 1998, vol. 1, pp 917–925 Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. In: Symposium (International) on Combustion 1998, vol. 1, pp 917–925
6.
go back to reference Ma, T., Stein, O., Chakraborty, N., Kempf, A.: A posteriori testing of algebraic flame surface density models for LES. Combust. Theor. Model. 17(3), 431–482 (2013)MathSciNetCrossRef Ma, T., Stein, O., Chakraborty, N., Kempf, A.: A posteriori testing of algebraic flame surface density models for LES. Combust. Theor. Model. 17(3), 431–482 (2013)MathSciNetCrossRef
7.
go back to reference Ma, T., Stein, O., Chakraborty, N., Kempf, A.: A posteriori testing of the flame surface density transport equation for LES. Combust. Theor. Model. 18(1), 32–64 (2014)MathSciNetCrossRef Ma, T., Stein, O., Chakraborty, N., Kempf, A.: A posteriori testing of the flame surface density transport equation for LES. Combust. Theor. Model. 18(1), 32–64 (2014)MathSciNetCrossRef
8.
go back to reference Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.-U., Krebs, W., Prade, B., Kaufmann, P., Veynante, D.: Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame 137(4), 489–505 (2004)CrossRef Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.-U., Krebs, W., Prade, B., Kaufmann, P., Veynante, D.: Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame 137(4), 489–505 (2004)CrossRef
9.
go back to reference Légier, J.-P., Poinsot, T., Veynante, D.: Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion. In: Proc. of the summer program 2000, Center for Turbulence Research, pp 157–168 Légier, J.-P., Poinsot, T., Veynante, D.: Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion. In: Proc. of the summer program 2000, Center for Turbulence Research, pp 157–168
10.
go back to reference Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., Bérat, C.: LES of an ignition sequence in a gas turbine engine. Combust. Flame 154(1), 2–22 (2008)CrossRef Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., Bérat, C.: LES of an ignition sequence in a gas turbine engine. Combust. Flame 154(1), 2–22 (2008)CrossRef
11.
go back to reference Schmitt, P., Poinsot, T., Schuermans, B., Geigle, K.: Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner. J. Fluid Mech. 570, 17–46 (2007)MATHCrossRef Schmitt, P., Poinsot, T., Schuermans, B., Geigle, K.: Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner. J. Fluid Mech. 570, 17–46 (2007)MATHCrossRef
12.
go back to reference Gicquel, O., Darabiha, N., Thévenin, D.: Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28(2), 1901–1908 (2000)CrossRef Gicquel, O., Darabiha, N., Thévenin, D.: Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28(2), 1901–1908 (2000)CrossRef
13.
go back to reference Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combust. Flame 140(3), 147–160 (2005)CrossRef Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combust. Flame 140(3), 147–160 (2005)CrossRef
14.
go back to reference Oijen, J.V., Goey, L.D.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161(1), 113–137 (2000)CrossRef Oijen, J.V., Goey, L.D.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161(1), 113–137 (2000)CrossRef
15.
go back to reference Van Oijen, J., Lammers, F., De Goey, L.: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127(3), 2124–2134 (2001)CrossRef Van Oijen, J., Lammers, F., De Goey, L.: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127(3), 2124–2134 (2001)CrossRef
16.
go back to reference Fiorina, B., Vicquelin, R., Auzillon, P., Darabiha, N., Gicquel, O., Veynante, D.: A filtered tabulated chemistry model for LES of premixed combustion. Combust. Flame 157(3), 465–475 (2010)CrossRef Fiorina, B., Vicquelin, R., Auzillon, P., Darabiha, N., Gicquel, O., Veynante, D.: A filtered tabulated chemistry model for LES of premixed combustion. Combust. Flame 157(3), 465–475 (2010)CrossRef
17.
go back to reference Kuenne, G., Ketelheun, A., Janicka, J.: LES Modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust. Flame 158(9), 1750–1767 (2011)CrossRef Kuenne, G., Ketelheun, A., Janicka, J.: LES Modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust. Flame 158(9), 1750–1767 (2011)CrossRef
18.
go back to reference Ketelheun, A., Kuenne, G., Janicka, J.: Heat transfer modeling in the context of Large Eddy Simulation of premixed combustion with tabulated chemistry. Flow Turbul. Combust. 91(4), 867–893 (2013)CrossRef Ketelheun, A., Kuenne, G., Janicka, J.: Heat transfer modeling in the context of Large Eddy Simulation of premixed combustion with tabulated chemistry. Flow Turbul. Combust. 91(4), 867–893 (2013)CrossRef
19.
go back to reference Wang, G., Boileau, M., Veynante, D.: Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame 158(11), 2199–2213 (2011)CrossRef Wang, G., Boileau, M., Veynante, D.: Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame 158(11), 2199–2213 (2011)CrossRef
20.
go back to reference Subramanian, V., Domingo, P., Vervisch, L.: Large eddy simulation of forced ignition of an annular bluff-body burner. Combust. Flame 157(3), 579–601 (2010)CrossRef Subramanian, V., Domingo, P., Vervisch, L.: Large eddy simulation of forced ignition of an annular bluff-body burner. Combust. Flame 157(3), 579–601 (2010)CrossRef
21.
go back to reference Sweeney, M.S., Hochgreb, S., Dunn, M.J., Barlow, R.S.: The structure of turbulent stratified and premixed methane/air flames I: Non-swirling flows. Combust. Flame 159(9), 2896–2911 (2012)CrossRef Sweeney, M.S., Hochgreb, S., Dunn, M.J., Barlow, R.S.: The structure of turbulent stratified and premixed methane/air flames I: Non-swirling flows. Combust. Flame 159(9), 2896–2911 (2012)CrossRef
22.
go back to reference Sweeney, M.S., Hochgreb, S., Dunn, M.J., Barlow, R.S.: The structure of turbulent stratified and premixed methane/air flames II: Swirling flows. Combust. Flame 159(9), 2912–2929 (2012)CrossRef Sweeney, M.S., Hochgreb, S., Dunn, M.J., Barlow, R.S.: The structure of turbulent stratified and premixed methane/air flames II: Swirling flows. Combust. Flame 159(9), 2912–2929 (2012)CrossRef
23.
go back to reference Zhou, R., Balusamy, S., Sweeney, M.S., Barlow, R.S., Hochgreb, S.: Flow field measurements of a series of turbulent premixed and stratified methane/air flames. Combust. Flame 160(10), 2017–2028 (2013)CrossRef Zhou, R., Balusamy, S., Sweeney, M.S., Barlow, R.S., Hochgreb, S.: Flow field measurements of a series of turbulent premixed and stratified methane/air flames. Combust. Flame 160(10), 2017–2028 (2013)CrossRef
24.
go back to reference Brauner, T., Jones, W., Marquis, A.: LES of the Cambridge Stratified Swirl Burner using a Sub-grid pdf Approach. Flow Turbul. Combust. 96(4), 965–985 (2016)CrossRef Brauner, T., Jones, W., Marquis, A.: LES of the Cambridge Stratified Swirl Burner using a Sub-grid pdf Approach. Flow Turbul. Combust. 96(4), 965–985 (2016)CrossRef
25.
go back to reference Mercier, R., Schmitt, T., Veynante, D., Fiorina, B.: The influence of combustion SGS submodels on the resolved flame propagation. Application to the LES of the Cambridge stratified flames. Proc. Combust. Inst. 35(2), 1259–1267 (2015)CrossRef Mercier, R., Schmitt, T., Veynante, D., Fiorina, B.: The influence of combustion SGS submodels on the resolved flame propagation. Application to the LES of the Cambridge stratified flames. Proc. Combust. Inst. 35(2), 1259–1267 (2015)CrossRef
26.
go back to reference Nambully, S., Domingo, P., Moureau, V., Vervisch, L.: A filtered-laminar-flame PDF sub-grid scale closure for LES of premixed turbulent flames. Part I: forMalism and application to a bluff-body burner with differential diffusion. Combust. Flame 161(7), 1756–1774 (2014)CrossRef Nambully, S., Domingo, P., Moureau, V., Vervisch, L.: A filtered-laminar-flame PDF sub-grid scale closure for LES of premixed turbulent flames. Part I: forMalism and application to a bluff-body burner with differential diffusion. Combust. Flame 161(7), 1756–1774 (2014)CrossRef
27.
go back to reference Nambully, S., Domingo, P., Moureau, V., Vervisch, L.: A filtered-laminar-flame PDF sub-grid-scale closure for LES of premixed turbulent flames: II. Application to a stratified bluff-body burner. Combust. Flame 161(7), 1775–1791 (2014)CrossRef Nambully, S., Domingo, P., Moureau, V., Vervisch, L.: A filtered-laminar-flame PDF sub-grid-scale closure for LES of premixed turbulent flames: II. Application to a stratified bluff-body burner. Combust. Flame 161(7), 1775–1791 (2014)CrossRef
28.
go back to reference Proch, F., Kempf, A.M.: Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry. Combust. Flame 161(10), 2627–2646 (2014)CrossRef Proch, F., Kempf, A.M.: Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry. Combust. Flame 161(10), 2627–2646 (2014)CrossRef
29.
go back to reference Van Oijen, J., Bastiaans, R., De Goey, L.: Low-dimensional manifolds in direct numerical simulations of premixed turbulent flames. Proc. Combust. Inst. 31(1), 1377–1384 (2007)CrossRef Van Oijen, J., Bastiaans, R., De Goey, L.: Low-dimensional manifolds in direct numerical simulations of premixed turbulent flames. Proc. Combust. Inst. 31(1), 1377–1384 (2007)CrossRef
32.
go back to reference Curtiss, C.F., Hirschfelder, J.O.: Transport properties of multicomponent gas mixtures. J. Chem. Phys. 17(6), 550–555 (1949)MATHCrossRef Curtiss, C.F., Hirschfelder, J.O.: Transport properties of multicomponent gas mixtures. J. Chem. Phys. 17(6), 550–555 (1949)MATHCrossRef
33.
go back to reference Bilger, R., Stårner, S, Kee, R.: On reduced mechanisms for methane/air combustion in nonpremixed flames. Combust. Flame 80(2), 135–149 (1990)CrossRef Bilger, R., Stårner, S, Kee, R.: On reduced mechanisms for methane/air combustion in nonpremixed flames. Combust. Flame 80(2), 135–149 (1990)CrossRef
34.
go back to reference Shoshin, Y., Tecce, L., Jarosinski, J.: Experimental and computational study of lean limit methane-air flame propagating upward in a 24 mm diameter tube. Combust. Sci. Technol. 180(10-11), 1812–1828 (2008)CrossRef Shoshin, Y., Tecce, L., Jarosinski, J.: Experimental and computational study of lean limit methane-air flame propagating upward in a 24 mm diameter tube. Combust. Sci. Technol. 180(10-11), 1812–1828 (2008)CrossRef
35.
go back to reference Ihme, M., Shunn, L., Zhang, J.: Regularization of reaction progress variable for application to flamelet-based combustion models. J. Comput. Phys. 231(23), 7715–7721 (2012)CrossRef Ihme, M., Shunn, L., Zhang, J.: Regularization of reaction progress variable for application to flamelet-based combustion models. J. Comput. Phys. 231(23), 7715–7721 (2012)CrossRef
36.
go back to reference Niu, Y.-S., Vervisch, L., Tao, P.D.: An optimization-based approach to detailed chemistry tabulation: Automated progress variable definition. Combust. Flame 160(4), 776–785 (2013)CrossRef Niu, Y.-S., Vervisch, L., Tao, P.D.: An optimization-based approach to detailed chemistry tabulation: Automated progress variable definition. Combust. Flame 160(4), 776–785 (2013)CrossRef
37.
go back to reference Zhang, H., Han, C., Ye, T., Ren, Z.: Large eddy simulation of turbulent premixed combustion using tabulated detailed chemistry and presumed probability density function. J. Turbul. 17(3), 327–355 (2016)MathSciNetCrossRef Zhang, H., Han, C., Ye, T., Ren, Z.: Large eddy simulation of turbulent premixed combustion using tabulated detailed chemistry and presumed probability density function. J. Turbul. 17(3), 327–355 (2016)MathSciNetCrossRef
38.
go back to reference Auzillon, P., Gicquel, O., Darabiha, N., Veynante, D., Fiorina, B.: A Filtered Tabulated Chemistry model for LES of stratified flames. Combust. Flame 159 (8), 2704–2717 (2012)CrossRef Auzillon, P., Gicquel, O., Darabiha, N., Veynante, D., Fiorina, B.: A Filtered Tabulated Chemistry model for LES of stratified flames. Combust. Flame 159 (8), 2704–2717 (2012)CrossRef
39.
go back to reference Ribert, G., Champion, M., Gicquel, O., Darabiha, N., Veynante, D.: Modeling nonadiabatic turbulent premixed reactive flows including tabulated chemistry. Combust. Flame 141(3), 271–280 (2005)CrossRef Ribert, G., Champion, M., Gicquel, O., Darabiha, N., Veynante, D.: Modeling nonadiabatic turbulent premixed reactive flows including tabulated chemistry. Combust. Flame 141(3), 271–280 (2005)CrossRef
40.
go back to reference Ribert, G., Champion, M., Plion, P.: Modeling turbulent reactive flows with variable equivalence ratio: application to the calculation of a reactive shear layer. Combust. Sci. Technol. 176(5-6), 907–923 (2004)CrossRef Ribert, G., Champion, M., Plion, P.: Modeling turbulent reactive flows with variable equivalence ratio: application to the calculation of a reactive shear layer. Combust. Sci. Technol. 176(5-6), 907–923 (2004)CrossRef
41.
go back to reference Wall, C., Boersma, B.J., Moin, P.: An evaluation of the assumed beta probability density function subgrid-scale model for large eddy simulation of nonpremixed, turbulent combustion with heat release. Phys. Fluids (1994-present) 12(10), 2522–2529 (2000)MATHCrossRef Wall, C., Boersma, B.J., Moin, P.: An evaluation of the assumed beta probability density function subgrid-scale model for large eddy simulation of nonpremixed, turbulent combustion with heat release. Phys. Fluids (1994-present) 12(10), 2522–2529 (2000)MATHCrossRef
42.
go back to reference Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)MathSciNetMATHCrossRef Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)MathSciNetMATHCrossRef
43.
go back to reference Chen, Y., Ihme, M.: Large-eddy simulation of a piloted premixed jet burner. Combust. Flame 160(12), 2896–2910 (2013)CrossRef Chen, Y., Ihme, M.: Large-eddy simulation of a piloted premixed jet burner. Combust. Flame 160(12), 2896–2910 (2013)CrossRef
44.
go back to reference Galpin, J., Angelberger, C., Naudin, A., Vervisch, L.: Large-eddy simulation of H 2–air auto-ignition using tabulated detailed chemistry. J. Turbul. 9, 1–21 (2008) Galpin, J., Angelberger, C., Naudin, A., Vervisch, L.: Large-eddy simulation of H 2–air auto-ignition using tabulated detailed chemistry. J. Turbul. 9, 1–21 (2008)
45.
go back to reference Domingo, P., Vervisch, L., Veynante, D.: Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 152(3), 415–432 (2008)CrossRef Domingo, P., Vervisch, L., Veynante, D.: Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 152(3), 415–432 (2008)CrossRef
46.
go back to reference Ihme, M., Pitsch, H.: Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 1. a priori study and presumed PDF closure. Combust. Flame 155(1), 70–89 (2008)CrossRef Ihme, M., Pitsch, H.: Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 1. a priori study and presumed PDF closure. Combust. Flame 155(1), 70–89 (2008)CrossRef
47.
go back to reference Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids (1994-present) 12(7), 1843–1863 (2000)MATHCrossRef Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids (1994-present) 12(7), 1843–1863 (2000)MATHCrossRef
48.
go back to reference Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests. Combust. Flame 131(1), 159–180 (2002)CrossRef Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests. Combust. Flame 131(1), 159–180 (2002)CrossRef
49.
go back to reference Gouldin, F., Bray, K., Chen, J.-Y.: Chemical closure model for fractal flamelets. Combust. Flame 77(3), 241–259 (1989)CrossRef Gouldin, F., Bray, K., Chen, J.-Y.: Chemical closure model for fractal flamelets. Combust. Flame 77(3), 241–259 (1989)CrossRef
50.
go back to reference Pierce, C.D., Moin, P.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids (1994-present) 10(12), 3041–3044 (1998)MathSciNetMATHCrossRef Pierce, C.D., Moin, P.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids (1994-present) 10(12), 3041–3044 (1998)MathSciNetMATHCrossRef
51.
go back to reference Merlin, C., Domingo, P., Vervisch, L.: Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC)–a flamelet presumed-pdf closure preserving laminar flame speed. Comptes Rendus Mé,canique 340(11), 917–932 (2012)CrossRef Merlin, C., Domingo, P., Vervisch, L.: Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC)–a flamelet presumed-pdf closure preserving laminar flame speed. Comptes Rendus Mé,canique 340(11), 917–932 (2012)CrossRef
52.
go back to reference Ihme, M., Pitsch, H.: Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 2. Application in LES of Sandia flames D and E. Combust. Flame 155(1), 90–107 (2008)MATHCrossRef Ihme, M., Pitsch, H.: Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 2. Application in LES of Sandia flames D and E. Combust. Flame 155(1), 90–107 (2008)MATHCrossRef
53.
go back to reference Pitsch, H., Steiner, H.: Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids (1994-present) 12(10), 2541–2554 (2000)MATHCrossRef Pitsch, H., Steiner, H.: Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids (1994-present) 12(10), 2541–2554 (2000)MATHCrossRef
54.
go back to reference Bray, K.: The challenge of turbulent combustion. In: Symposium (International) on Combustion 1996, vol. 1, pp 1–26 Bray, K.: The challenge of turbulent combustion. In: Symposium (International) on Combustion 1996, vol. 1, pp 1–26
55.
go back to reference Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28(3), 193–266 (2002)CrossRef Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28(3), 193–266 (2002)CrossRef
56.
go back to reference Vreman, B., Geurts, B., Kuerten, H.: Large-eddy simulation of the temporal mixing layer using the Clark model. Theor. Comput. Fluid Dyn. 8(4), 309–324 (1996)MATHCrossRef Vreman, B., Geurts, B., Kuerten, H.: Large-eddy simulation of the temporal mixing layer using the Clark model. Theor. Comput. Fluid Dyn. 8(4), 309–324 (1996)MATHCrossRef
57.
58.
go back to reference Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A (1989-1993) 4(3), 633–635 (1992)MathSciNetCrossRef Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A (1989-1993) 4(3), 633–635 (1992)MathSciNetCrossRef
59.
go back to reference Meneveau, C., Lund, T.S., Cabot, W.H.: A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–385 (1996)MATHCrossRef Meneveau, C., Lund, T.S., Cabot, W.H.: A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–385 (1996)MATHCrossRef
61.
go back to reference Dinesh, K.R., Kirkpatrick, M.: Study of jet precession, recirculation and vortex breakdown in turbulent swirling jets using LES. Comput. Fluids 38(6), 1232–1242 (2009)MATHCrossRef Dinesh, K.R., Kirkpatrick, M.: Study of jet precession, recirculation and vortex breakdown in turbulent swirling jets using LES. Comput. Fluids 38(6), 1232–1242 (2009)MATHCrossRef
62.
go back to reference Dinesh, K.R., Jenkins, K., Savill, A., Kirkpatrick, M.: Swirl effects on external intermittency in turbulent jets. Int. J. Heat Fluid Flow 33(1), 193–206 (2012)CrossRef Dinesh, K.R., Jenkins, K., Savill, A., Kirkpatrick, M.: Swirl effects on external intermittency in turbulent jets. Int. J. Heat Fluid Flow 33(1), 193–206 (2012)CrossRef
63.
go back to reference Domingo, P., Vervisch, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame 143(4), 566–586 (2005)CrossRef Domingo, P., Vervisch, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame 143(4), 566–586 (2005)CrossRef
64.
go back to reference Lu, X., Wang, S., Sung, H.-G., Hsieh, S.-Y., Yang, V.: Large-eddy simulations of turbulent swirling flows injected into a dump chamber. J. Fluid Mech. 527, 171–195 (2005)MATHCrossRef Lu, X., Wang, S., Sung, H.-G., Hsieh, S.-Y., Yang, V.: Large-eddy simulations of turbulent swirling flows injected into a dump chamber. J. Fluid Mech. 527, 171–195 (2005)MATHCrossRef
65.
go back to reference Barlow, R.S., Dunn, M.J., Sweeney, M.S., Hochgreb, S.: Effects of preferential transport in turbulent bluff-body-stabilized lean premixed CH 4/air flames. Combust. Flame 159(8), 2563–2575 (2012)CrossRef Barlow, R.S., Dunn, M.J., Sweeney, M.S., Hochgreb, S.: Effects of preferential transport in turbulent bluff-body-stabilized lean premixed CH 4/air flames. Combust. Flame 159(8), 2563–2575 (2012)CrossRef
66.
go back to reference Dunn, M.J., Barlow, R.S.: Effects of preferential transport and strain in bluff body stabilized lean and rich premixed CH 4/air flames. Proc. Combust. Inst. 34(1), 1411–1419 (2013)CrossRef Dunn, M.J., Barlow, R.S.: Effects of preferential transport and strain in bluff body stabilized lean and rich premixed CH 4/air flames. Proc. Combust. Inst. 34(1), 1411–1419 (2013)CrossRef
Metadata
Title
Large Eddy Simulation of Turbulent Premixed Swirling Flames Using Dynamic Thickened Flame with Tabulated Detailed Chemistry
Authors
Hongda Zhang
Taohong Ye
Gaofeng Wang
Peng Tang
Minghou Liu
Publication date
16-12-2016
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 3/2017
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-016-9791-9

Other articles of this Issue 3/2017

Flow, Turbulence and Combustion 3/2017 Go to the issue

Premium Partners