Skip to main content
Top
Published in: Journal of Materials Science 22/2017

01-08-2017 | Energy materials

Large enhanced conversion efficiency of perovskite solar cells by CsBr doping

Authors: Li-Ying Zhang, Yong Zhang, Wei-Bao Guan, Ke-Fan Wang, Zhen-Xiang Cheng, Yuan-Xu Wang

Published in: Journal of Materials Science | Issue 22/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Perovskite solar cells single-doped with Br or Cs+ ions have been proved to be an effective approach to improve their efficiency and stability. In our work, we took advantage of co-doping with Br and Cs+. At our studied doping levels from CH3NH3I:PbI2:CsBr = 1:1:0 (x = 0) to 0.85:1:0.15 (x = 0.15), CsBr doping does not introduce any detectable impurity, and the crystal grains grow larger with increasing CsBr doping level. Furthermore, when the CsBr doping level is less than x = 0.1, it can progressively enhance the optical absorption of the perovskite film, although the absorption begins to decrease when the doping level rises above x = 0.1. X-ray photoelectron spectroscopy measurements show that Br has successfully replaced I and bonds with Pb2+ after CsBr doping. At the optimized doping level of x = 0.1, the incorporation of CsBr in the reaction system can improve the morphology of perovskite films and greatly enhance the efficiency from 9.8% for undoped sample to 13.6%, better than single Br or Cs+ doping. Our result shows that CsBr doping is an effective method to enhance the efficiency of perovskite solar cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Kim YH, Cho H, Heo JH et al (2015) Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv Mater 27:1248–1254CrossRef Kim YH, Cho H, Heo JH et al (2015) Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv Mater 27:1248–1254CrossRef
2.
go back to reference Lee MM, Teuscher J, Miyasaka T et al (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647CrossRef Lee MM, Teuscher J, Miyasaka T et al (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647CrossRef
3.
go back to reference Stranks SD, Eperon GE, Grancini G et al (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344CrossRef Stranks SD, Eperon GE, Grancini G et al (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344CrossRef
4.
go back to reference Xing G, Mathews N, Sun S et al (2013) Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342:344–347CrossRef Xing G, Mathews N, Sun S et al (2013) Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342:344–347CrossRef
5.
go back to reference Saliba M, Matsui T, Seo JY et al (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9:1989–1997CrossRef Saliba M, Matsui T, Seo JY et al (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9:1989–1997CrossRef
6.
go back to reference Hao F, Stoumpos CC, Cao DH et al (2014) Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat Photon 8:489–494CrossRef Hao F, Stoumpos CC, Cao DH et al (2014) Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat Photon 8:489–494CrossRef
7.
go back to reference Hendon CH, Yang RX, Burton LA et al (2014) Assessment of polyanion (BF4− and PF6−) substitutions in hybrid halide perovskites. J Mater Chem A 3:9067–9070CrossRef Hendon CH, Yang RX, Burton LA et al (2014) Assessment of polyanion (BF4− and PF6−) substitutions in hybrid halide perovskites. J Mater Chem A 3:9067–9070CrossRef
8.
go back to reference Kim HS, Lee CR, Im JH et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591CrossRef Kim HS, Lee CR, Im JH et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591CrossRef
9.
go back to reference Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398CrossRef Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398CrossRef
10.
go back to reference Xiao Z, Bi C, Shao Y et al (2014) Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ Sci 7:2619–2623CrossRef Xiao Z, Bi C, Shao Y et al (2014) Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ Sci 7:2619–2623CrossRef
11.
go back to reference Barrows AT, Pearson AJ, Kwak CK et al (2014) Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ Sci 7:2944–2950CrossRef Barrows AT, Pearson AJ, Kwak CK et al (2014) Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ Sci 7:2944–2950CrossRef
12.
go back to reference Chen Y, Zhao Y, Liang Z (2015) Non-thermal annealing fabrication of efficient planar perovskite solar cells with inclusion of NH4Cl. Chem Mater 27:1448–1451CrossRef Chen Y, Zhao Y, Liang Z (2015) Non-thermal annealing fabrication of efficient planar perovskite solar cells with inclusion of NH4Cl. Chem Mater 27:1448–1451CrossRef
13.
go back to reference Zuo CT, Ding LM (2014) An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale 6:9935–9938CrossRef Zuo CT, Ding LM (2014) An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale 6:9935–9938CrossRef
14.
go back to reference Choi H, Jeong J, Kim HB et al (2014) Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 7:80–85CrossRef Choi H, Jeong J, Kim HB et al (2014) Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 7:80–85CrossRef
15.
go back to reference Saliba M, Matsui T, Seo JY et al (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9:1989–1997CrossRef Saliba M, Matsui T, Seo JY et al (2016) Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci 9:1989–1997CrossRef
16.
go back to reference Noh JH, Sang HI, Jin HH et al (2013) Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 13:1764–1769CrossRef Noh JH, Sang HI, Jin HH et al (2013) Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 13:1764–1769CrossRef
17.
go back to reference Suarez B, Gonzalez-Pedro V, Ripolles TS et al (2014) Recombination study of combined halides (Cl, Br, I) perovskite solar cells. J Phys Chem Lett 5:1628–1635CrossRef Suarez B, Gonzalez-Pedro V, Ripolles TS et al (2014) Recombination study of combined halides (Cl, Br, I) perovskite solar cells. J Phys Chem Lett 5:1628–1635CrossRef
18.
go back to reference Tang S, Deng Y, Zheng X et al (2017) Composition engineering in doctor-blading of perovskite solar cells. Adv Energy Mater 7:1700302-1–1700302-7 Tang S, Deng Y, Zheng X et al (2017) Composition engineering in doctor-blading of perovskite solar cells. Adv Energy Mater 7:1700302-1–1700302-7
19.
go back to reference Qiu W, Ray A, Jaysankar M et al (2017) An interdiffusion method for highly performing cesium/formamidinium double cation perovskites. Adv Funct Mater 27:1700920-1–1700920-9 Qiu W, Ray A, Jaysankar M et al (2017) An interdiffusion method for highly performing cesium/formamidinium double cation perovskites. Adv Funct Mater 27:1700920-1–1700920-9
20.
go back to reference Yuan SS, Zhang Y, Liu WQ et al (2014) Efficient inverted organic solar cells using Zn-doped titanium oxide films as electron transport layers. Electrochim Acta 116:442–446CrossRef Yuan SS, Zhang Y, Liu WQ et al (2014) Efficient inverted organic solar cells using Zn-doped titanium oxide films as electron transport layers. Electrochim Acta 116:442–446CrossRef
21.
go back to reference Ahn N, Son DY, Jang IH et al (2015) Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J Am Chem Soc 137:8696–8699CrossRef Ahn N, Son DY, Jang IH et al (2015) Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J Am Chem Soc 137:8696–8699CrossRef
22.
go back to reference Burschka J, Pellet N, Moon SJ et al (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319CrossRef Burschka J, Pellet N, Moon SJ et al (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319CrossRef
23.
go back to reference Zhu W, Bao C, Li F et al (2016) A halide exchange engineering for CH3NH3PbI3−x Br x perovskite solar cells with high performance and stability. Nano Energy 19:17–26CrossRef Zhu W, Bao C, Li F et al (2016) A halide exchange engineering for CH3NH3PbI3−x Br x perovskite solar cells with high performance and stability. Nano Energy 19:17–26CrossRef
24.
go back to reference Zhao YX, Zhu K (2013) Charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar cells. J Phys Chem Lett 4:2880–2884CrossRef Zhao YX, Zhu K (2013) Charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar cells. J Phys Chem Lett 4:2880–2884CrossRef
25.
go back to reference Niemann RG, Gouda L, Hu J et al (2016) Cs+ incorporation into CH3NH3PbI3 perovskite: substitution limit and stability enhancement. J Mater Chem A 4:17819–17827CrossRef Niemann RG, Gouda L, Hu J et al (2016) Cs+ incorporation into CH3NH3PbI3 perovskite: substitution limit and stability enhancement. J Mater Chem A 4:17819–17827CrossRef
27.
go back to reference Tu Y, Wu J, Lan Z et al (2017) Modulated CH3NH3PbI3−x Br x film for efficient perovskite solar cells exceeding 18%. Sci Rep 7:44603-1–44603-8 Tu Y, Wu J, Lan Z et al (2017) Modulated CH3NH3PbI3−x Br x film for efficient perovskite solar cells exceeding 18%. Sci Rep 7:44603-1–44603-8
28.
go back to reference Atourki L, Vega E, Marí B et al (2016) Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3−x Br x (0 ≤ x ≤ 1). Appl Surf Sci 371:112–117CrossRef Atourki L, Vega E, Marí B et al (2016) Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3−x Br x (0 ≤ x ≤ 1). Appl Surf Sci 371:112–117CrossRef
Metadata
Title
Large enhanced conversion efficiency of perovskite solar cells by CsBr doping
Authors
Li-Ying Zhang
Yong Zhang
Wei-Bao Guan
Ke-Fan Wang
Zhen-Xiang Cheng
Yuan-Xu Wang
Publication date
01-08-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 22/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1429-3

Other articles of this Issue 22/2017

Journal of Materials Science 22/2017 Go to the issue

Premium Partners