Skip to main content
Top
Published in: Journal of Materials Science 9/2017

11-01-2017 | Original Paper

Large-scale and template-free synthesis of hierarchically porous MnCo2O4.5 as anode material for lithium-ion batteries with enhanced electrochemical performance

Authors: Xudong Hu, Simin Zhang, Xin Li, Xiaohong Sun, Shu Cai, Huiming Ji, Feng Hou, Chunming Zheng, Wenbin Hu

Published in: Journal of Materials Science | Issue 9/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We report a simple and large-scale synthetic method of hierarchically porous manganese cobalt oxides without using any template that exhibit enhanced electrochemical performance compared with the nanoparticles counterpart. The hierarchically porous structures consist of close-packed large grains within wormlike hierarchical pores resulting from the piling of the nanoparticles wall. The calcination container conditions are of key importance to affect the morphology and structure of the manganese cobalt oxides. In order to check the fundamental significance of hierarchically porous structure, pristine manganese cobalt oxides without coating any conducting agent are tested as the lithium-ion battery anodes. The cycling stability and rate performance of the hierarchically porous electrode are much better than that of the nanoparticles counterpart with specific capacity as high as 413 mAh g−1 after 100 cycles at a current density of 300 mA g−1. For the purpose of explaining the improved electrochemical performance of the hierarchically porous materials, both electrodes were analyzed with cyclic voltammetry, electrochemical impedance spectroscopy, and transmission electron microscopy measurement. We found that the close-packed morphology and the hierarchically porous structure are responsible for the volume change accommodation and electron-contact maintenance leading to the high specific capacity, cycling stability, and rate performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Rosa MP (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38:2565–2575CrossRef Rosa MP (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38:2565–2575CrossRef
2.
go back to reference Cheng FY, Liang J, Tao ZL, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715CrossRef Cheng FY, Liang J, Tao ZL, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715CrossRef
3.
go back to reference Goodenough JB, Kim YS (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef Goodenough JB, Kim YS (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef
4.
go back to reference Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRef Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRef
5.
go back to reference Li H, Wang ZX, Chen LQ, Huang XJ (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593–4607CrossRef Li H, Wang ZX, Chen LQ, Huang XJ (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593–4607CrossRef
6.
go back to reference Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRef Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRef
7.
go back to reference Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714CrossRef Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714CrossRef
8.
go back to reference Tanaka T, Ito S, Muramatsu M, Yamada T, Kamiko H, Kakimoto N, Inui Y (2015) Accurate and versatile simulation of transient voltage profile of lithium-ion secondary battery employing internal equivalent electric circuit. Appl Energy 143:200–210CrossRef Tanaka T, Ito S, Muramatsu M, Yamada T, Kamiko H, Kakimoto N, Inui Y (2015) Accurate and versatile simulation of transient voltage profile of lithium-ion secondary battery employing internal equivalent electric circuit. Appl Energy 143:200–210CrossRef
9.
go back to reference Sun Y, Hu X, Luo W, Xia F, Huang Y (2013) Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater 23:2436–2444CrossRef Sun Y, Hu X, Luo W, Xia F, Huang Y (2013) Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater 23:2436–2444CrossRef
10.
go back to reference Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS, Song WG, Wan LJ (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20:1160–1165CrossRef Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS, Song WG, Wan LJ (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20:1160–1165CrossRef
11.
go back to reference Wang H, Cui L-F, Yang Y, Casalongue HS, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980CrossRef Wang H, Cui L-F, Yang Y, Casalongue HS, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980CrossRef
12.
go back to reference Wu HB, Chen JS, Hng HH, Lou XW (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526–2542CrossRef Wu HB, Chen JS, Hng HH, Lou XW (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526–2542CrossRef
13.
go back to reference Reddy MV, Rao GVS, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457CrossRef Reddy MV, Rao GVS, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457CrossRef
14.
go back to reference Fan Y, Shao H, Wang J, Liu L, Zhang J, Cao C (2011) Synthesis of foam-like freestanding Co3O4 nanosheets with enhanced electrochemical activities. Chem Commun 47:3469–3471CrossRef Fan Y, Shao H, Wang J, Liu L, Zhang J, Cao C (2011) Synthesis of foam-like freestanding Co3O4 nanosheets with enhanced electrochemical activities. Chem Commun 47:3469–3471CrossRef
15.
go back to reference Ren W, Wang C, Lu L, Li D, Cheng C, Liu J (2013) SnO2@Si core-shell nanowire arrays on carbon cloth as a flexible anode for Li ion batteries. J Mater Chem A 1:13433–13438CrossRef Ren W, Wang C, Lu L, Li D, Cheng C, Liu J (2013) SnO2@Si core-shell nanowire arrays on carbon cloth as a flexible anode for Li ion batteries. J Mater Chem A 1:13433–13438CrossRef
16.
go back to reference Qiu Y, Xu G-L, Yan K, Sun H, Xiao J, Yang S, Sun S-G, Jin L, Deng H (2011) Morphology-conserved transformation: synthesis of hierarchical mesoporous nanostructures of Mn2O3 and the nanostructural effects on Li-ion insertion/deinsertion properties. J Mater Chem 21:6346–6353CrossRef Qiu Y, Xu G-L, Yan K, Sun H, Xiao J, Yang S, Sun S-G, Jin L, Deng H (2011) Morphology-conserved transformation: synthesis of hierarchical mesoporous nanostructures of Mn2O3 and the nanostructural effects on Li-ion insertion/deinsertion properties. J Mater Chem 21:6346–6353CrossRef
17.
go back to reference Reddy MV, Yu T, Sow C-H, Shen ZX, Lim CT, Rao GVS, Chowdari BVR (2007) alpha-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv Funct Mater 17:2792–2799CrossRef Reddy MV, Yu T, Sow C-H, Shen ZX, Lim CT, Rao GVS, Chowdari BVR (2007) alpha-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv Funct Mater 17:2792–2799CrossRef
18.
go back to reference Li J, Xiong S, Li X, Qian Y (2013) A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 5:2045–2054CrossRef Li J, Xiong S, Li X, Qian Y (2013) A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 5:2045–2054CrossRef
19.
go back to reference Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699CrossRef Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699CrossRef
20.
go back to reference Wang Y, Cao G (2008) Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater 20:2251–2269CrossRef Wang Y, Cao G (2008) Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater 20:2251–2269CrossRef
21.
go back to reference Liu B, Soares P, Checkles C, Zhao Y, Yu G (2013) Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Lett 13:3414–3419CrossRef Liu B, Soares P, Checkles C, Zhao Y, Yu G (2013) Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Lett 13:3414–3419CrossRef
22.
go back to reference Yin S, Zhang Y, Kong J, Zou C, Li CM, Lu X, Ma J, Boey FYC, Chen X (2011) Assembly of graphene sheets into hierarchical structures for high-performance energy storage. ACS Nano 5:3831–3838CrossRef Yin S, Zhang Y, Kong J, Zou C, Li CM, Lu X, Ma J, Boey FYC, Chen X (2011) Assembly of graphene sheets into hierarchical structures for high-performance energy storage. ACS Nano 5:3831–3838CrossRef
23.
go back to reference Luo Y, Luo J, Jiang J, Zhou W, Yang H, Qi X, Zhang H, Fan HJ, Yu DYW, Li CM, Yu T (2012) Seed-assisted synthesis of highly ordered TiO2@alpha-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ Sci 5:6559–6566CrossRef Luo Y, Luo J, Jiang J, Zhou W, Yang H, Qi X, Zhang H, Fan HJ, Yu DYW, Li CM, Yu T (2012) Seed-assisted synthesis of highly ordered TiO2@alpha-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ Sci 5:6559–6566CrossRef
24.
go back to reference Hou X, Wang X, Liu B, Wang Q, Luo T, Chen D, Shen G (2014) Hierarchical MnCo2O4 nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance. Nanoscale 6:8858–8864CrossRef Hou X, Wang X, Liu B, Wang Q, Luo T, Chen D, Shen G (2014) Hierarchical MnCo2O4 nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance. Nanoscale 6:8858–8864CrossRef
25.
go back to reference Zhou L, Zhao D, Lou XW (2012) Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv Mater 24:745–748CrossRef Zhou L, Zhao D, Lou XW (2012) Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv Mater 24:745–748CrossRef
26.
go back to reference Zhu GN, Wang YG, Xia YY (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5:6652–6667CrossRef Zhu GN, Wang YG, Xia YY (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5:6652–6667CrossRef
27.
go back to reference Yu L, Zhang L, Wu HB, Zhang G, Lou XW (2013) Controlled synthesis of hierarchical CoxMn3-xO4 array micro-/nanostructures with tunable morphology and composition as integrated electrodes for lithium-ion batteries. Energy Environ Sci 6:2664–2671CrossRef Yu L, Zhang L, Wu HB, Zhang G, Lou XW (2013) Controlled synthesis of hierarchical CoxMn3-xO4 array micro-/nanostructures with tunable morphology and composition as integrated electrodes for lithium-ion batteries. Energy Environ Sci 6:2664–2671CrossRef
28.
go back to reference Mondal AK, Su D, Chen S, Ung A, Kim HS, Wang G (2015) Mesoporous MnCo2O4 with a flake-like structure as advanced electrode materials for lithium-ion batteries and supercapacitors. Chem Eur J 21:1526–1532CrossRef Mondal AK, Su D, Chen S, Ung A, Kim HS, Wang G (2015) Mesoporous MnCo2O4 with a flake-like structure as advanced electrode materials for lithium-ion batteries and supercapacitors. Chem Eur J 21:1526–1532CrossRef
29.
go back to reference Xia Y, Zhang WK, Xiao Z, Huang H, Zeng HJ, Chen XR, Chen F, Gan YP, Tao XY (2012) Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries. J Mater Chem 22:9209–9215CrossRef Xia Y, Zhang WK, Xiao Z, Huang H, Zeng HJ, Chen XR, Chen F, Gan YP, Tao XY (2012) Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries. J Mater Chem 22:9209–9215CrossRef
30.
go back to reference Zhang JJ, Sun YF, Yao Y, Huang T, Yu AS (2013) Lysine-assisted hydrothermal synthesis of hierarchically porous Fe2O3 microspheres as anode materials for lithium-ion batteries. J Power Sources 222:59–65CrossRef Zhang JJ, Sun YF, Yao Y, Huang T, Yu AS (2013) Lysine-assisted hydrothermal synthesis of hierarchically porous Fe2O3 microspheres as anode materials for lithium-ion batteries. J Power Sources 222:59–65CrossRef
31.
go back to reference Li Y, Zhu S, Liu Q, Gu J, Guo Z, Chen Z, Feng C, Zhang D, Moon WJ (2012) Carbon-coated SnO2@C with hierarchically porous structures and graphite layers inside for a high-performance lithium-ion battery. J Mater Chem 22:2766–2773CrossRef Li Y, Zhu S, Liu Q, Gu J, Guo Z, Chen Z, Feng C, Zhang D, Moon WJ (2012) Carbon-coated SnO2@C with hierarchically porous structures and graphite layers inside for a high-performance lithium-ion battery. J Mater Chem 22:2766–2773CrossRef
32.
go back to reference Hu L, Zhong H, Zheng X, Huang Y, Zhang P, Chen Q (2012) CoMn2O4 Spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci Rep 2:986 Hu L, Zhong H, Zheng X, Huang Y, Zhang P, Chen Q (2012) CoMn2O4 Spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci Rep 2:986
33.
go back to reference Sharma Y, Sharma N, Rao GVS, Chowdari BVR (2008) Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochim Acta 53:2380–2385CrossRef Sharma Y, Sharma N, Rao GVS, Chowdari BVR (2008) Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochim Acta 53:2380–2385CrossRef
34.
go back to reference Sharma Y, Sharma N, Rao GVS, Chowdari BVR (2007) Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries. J Power Sources 173:495–501CrossRef Sharma Y, Sharma N, Rao GVS, Chowdari BVR (2007) Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries. J Power Sources 173:495–501CrossRef
35.
go back to reference Kim SW, Lee HW, Muralidharan P, Seo DH, Yoon WS, Kim DK, Kang K (2011) Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res 4:505–510CrossRef Kim SW, Lee HW, Muralidharan P, Seo DH, Yoon WS, Kim DK, Kang K (2011) Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res 4:505–510CrossRef
36.
go back to reference Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011CrossRef Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011CrossRef
37.
go back to reference Li G, Xu L, Zhai Y, Hou Y (2015) Fabrication of hierarchical porous MnCo2O4 and CoMn2O4 microspheres composed of polyhedral nanoparticles as promising anodes for long-life LIBs. J Mater Chem A 3:14298–14306CrossRef Li G, Xu L, Zhai Y, Hou Y (2015) Fabrication of hierarchical porous MnCo2O4 and CoMn2O4 microspheres composed of polyhedral nanoparticles as promising anodes for long-life LIBs. J Mater Chem A 3:14298–14306CrossRef
38.
go back to reference Niu FE, Wang NN, Yue J, Liang C, Yang J, Qian YT (2016) Hierarchically porous CuCo2O4 microflowers: a superior anode material for Li-ion batteries and a stable cathode electrocatalyst for Li-O2 Batteries. Electrochim Acta 208:148–155CrossRef Niu FE, Wang NN, Yue J, Liang C, Yang J, Qian YT (2016) Hierarchically porous CuCo2O4 microflowers: a superior anode material for Li-ion batteries and a stable cathode electrocatalyst for Li-O2 Batteries. Electrochim Acta 208:148–155CrossRef
39.
go back to reference Zhao D, Qin JW, Zheng LR, Cao MH (2016) Amorphous vanadium oxide/molybdenum oxide hybrid with three dimensional ordered hierarchically porous structure as a high performance Li-Ion battery anode. Chem Mater 28:4180–4190CrossRef Zhao D, Qin JW, Zheng LR, Cao MH (2016) Amorphous vanadium oxide/molybdenum oxide hybrid with three dimensional ordered hierarchically porous structure as a high performance Li-Ion battery anode. Chem Mater 28:4180–4190CrossRef
40.
go back to reference Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng HM (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194CrossRef Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng HM (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194CrossRef
41.
go back to reference Wang L, Liu B, Ran S, Huang H, Wang X, Liang B, Chen D, Shen G (2012) Nanorod-assembled Co3O4 hexapods with enhanced electrochemical performance for lithium-ion batteries. J Mater Chem 22:23541–23546CrossRef Wang L, Liu B, Ran S, Huang H, Wang X, Liang B, Chen D, Shen G (2012) Nanorod-assembled Co3O4 hexapods with enhanced electrochemical performance for lithium-ion batteries. J Mater Chem 22:23541–23546CrossRef
42.
go back to reference Chang L, Mai L, Xu X, An Q, Zhao Y, Wang D, Feng X (2013) Pore-controlled synthesis of Mn2O3 microspheres for ultralong-life lithium storage electrode. Rsc Adv 3:1947–1952CrossRef Chang L, Mai L, Xu X, An Q, Zhao Y, Wang D, Feng X (2013) Pore-controlled synthesis of Mn2O3 microspheres for ultralong-life lithium storage electrode. Rsc Adv 3:1947–1952CrossRef
43.
go back to reference Fu C, Li G, Luo D, Huang X, Zheng J, Li L (2014) One-step calcination-free synthesis of multicomponent spinel assembled microspheres for high-performance anodes of Li-ion batteries: a case study of MnCo2O4. ACS Appl Mater Interfaces 6:2439–2449CrossRef Fu C, Li G, Luo D, Huang X, Zheng J, Li L (2014) One-step calcination-free synthesis of multicomponent spinel assembled microspheres for high-performance anodes of Li-ion batteries: a case study of MnCo2O4. ACS Appl Mater Interfaces 6:2439–2449CrossRef
44.
go back to reference Li J, Wang J, Liang X, Zhang Z, Liu H, Qian Y, Xiong S (2014) Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures. ACS Appl Mater Interfaces 6:24–30CrossRef Li J, Wang J, Liang X, Zhang Z, Liu H, Qian Y, Xiong S (2014) Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures. ACS Appl Mater Interfaces 6:24–30CrossRef
45.
go back to reference Li W, Xu K, Song G, Zhou X, Zou R, Yang J, Chen Z, Hu J (2014) Facile synthesis of porous MnCo2O4.5 hierarchical architectures for high- rate supercapacitors. CrystEngComm 16:2335–2339CrossRef Li W, Xu K, Song G, Zhou X, Zou R, Yang J, Chen Z, Hu J (2014) Facile synthesis of porous MnCo2O4.5 hierarchical architectures for high- rate supercapacitors. CrystEngComm 16:2335–2339CrossRef
46.
go back to reference Hao P, Zhao Z, Li L, Tuan C-C, Li H, Sang Y, Jiang H, Wong CP, Liu H (2015) The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density. Nanoscale 7:14401–14412CrossRef Hao P, Zhao Z, Li L, Tuan C-C, Li H, Sang Y, Jiang H, Wong CP, Liu H (2015) The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density. Nanoscale 7:14401–14412CrossRef
47.
go back to reference Li G, Li L, Shi J, Yuan Y, Li Y, Zhao W, Shi J (2014) One-pot pyrolytic synthesis of mesoporous MCo2O44.5 (M = Mn, Ni, Fe, Cu) spinels and its high efficient catalytic properties for CO oxidation at low temperature. J Mol Catal A-Chem 390:97–104CrossRef Li G, Li L, Shi J, Yuan Y, Li Y, Zhao W, Shi J (2014) One-pot pyrolytic synthesis of mesoporous MCo2O44.5 (M = Mn, Ni, Fe, Cu) spinels and its high efficient catalytic properties for CO oxidation at low temperature. J Mol Catal A-Chem 390:97–104CrossRef
48.
go back to reference Li J, Zhou N, Wang H, Li H, Xie Z, Chu H, Tang Y, Sun L, Peng Z (2015) Three-dimensional MnCo2O4.5 mesoporous networks as an electrocatalyst for oxygen reduction reaction. J Electrochem Soc 162:A2302–A2307CrossRef Li J, Zhou N, Wang H, Li H, Xie Z, Chu H, Tang Y, Sun L, Peng Z (2015) Three-dimensional MnCo2O4.5 mesoporous networks as an electrocatalyst for oxygen reduction reaction. J Electrochem Soc 162:A2302–A2307CrossRef
49.
go back to reference Yang W, Hao J, Zhang Z, Lu B, Zhang B, Tang J (2014) Synthesis of hierarchical MnCo2O4.5 nanostructure modified MnOOH nanorods for catalytic degradation of methylene blue. Catal Commun 16:174–178CrossRef Yang W, Hao J, Zhang Z, Lu B, Zhang B, Tang J (2014) Synthesis of hierarchical MnCo2O4.5 nanostructure modified MnOOH nanorods for catalytic degradation of methylene blue. Catal Commun 16:174–178CrossRef
50.
go back to reference Sun X, Shi Y, Zhang P, Zheng C, Zheng X, Zhang F, Zhang Y, Guan N, Zhao D, Stucky GD (2011) Container effect in nanocasting synthesis of mesoporous metal oxides. J Am Chem Soc 133:14542–14545CrossRef Sun X, Shi Y, Zhang P, Zheng C, Zheng X, Zhang F, Zhang Y, Guan N, Zhao D, Stucky GD (2011) Container effect in nanocasting synthesis of mesoporous metal oxides. J Am Chem Soc 133:14542–14545CrossRef
51.
go back to reference Sun X, Hu X, Wang Y, Xiong R, Li X, Liu J, Ji H, Li X, Cai S, Zheng C (2015) Enhanced gas-sensing performance of Fe-doped ordered mesoporous NiO with long-range periodicity. J Phys Chem C 119:3228–3237CrossRef Sun X, Hu X, Wang Y, Xiong R, Li X, Liu J, Ji H, Li X, Cai S, Zheng C (2015) Enhanced gas-sensing performance of Fe-doped ordered mesoporous NiO with long-range periodicity. J Phys Chem C 119:3228–3237CrossRef
52.
go back to reference Sun X, Hao H, Ji H, Li X, Cai S, Zheng C (2014) Nanocasting Synthesis of In2O3 with appropriate mesostructured ordering and enhanced gas-sensing property. ACS Appl Mater Interfaces 6:401–409CrossRef Sun X, Hao H, Ji H, Li X, Cai S, Zheng C (2014) Nanocasting Synthesis of In2O3 with appropriate mesostructured ordering and enhanced gas-sensing property. ACS Appl Mater Interfaces 6:401–409CrossRef
53.
go back to reference Wang YJ, Kuang PY, Li N, Liu ZQ, Su YZ, Chen S (2015) Facile hydrothermal synthesis of cobalt manganese oxides spindles and their magnetic properties. Ceram Int 41:8670–8679CrossRef Wang YJ, Kuang PY, Li N, Liu ZQ, Su YZ, Chen S (2015) Facile hydrothermal synthesis of cobalt manganese oxides spindles and their magnetic properties. Ceram Int 41:8670–8679CrossRef
54.
go back to reference Hou X, Liu B, Wang X, Wang Z, Wang Q, Chen D, Shen G (2013) SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. Nanoscale 5:7831–7837CrossRef Hou X, Liu B, Wang X, Wang Z, Wang Q, Chen D, Shen G (2013) SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. Nanoscale 5:7831–7837CrossRef
55.
go back to reference Courtel FM, Duncan H, Abu LY, Davidson IJ (2011) High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn(2)O(4) (A = Co, Ni, and Zn). J Mater Chem 21:10206–10218CrossRef Courtel FM, Duncan H, Abu LY, Davidson IJ (2011) High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn(2)O(4) (A = Co, Ni, and Zn). J Mater Chem 21:10206–10218CrossRef
56.
go back to reference Zhai Y, Mao H, Liu Ren PX, Xu L, Qian Y (2011) Facile fabrication of hierarchical porous rose-like NiCo2O4 nanoflake/MnCo2O4 nanoparticle composites with enhanced electrochemical performance for energy storage. J Mater Chem A 3:16142–16149CrossRef Zhai Y, Mao H, Liu Ren PX, Xu L, Qian Y (2011) Facile fabrication of hierarchical porous rose-like NiCo2O4 nanoflake/MnCo2O4 nanoparticle composites with enhanced electrochemical performance for energy storage. J Mater Chem A 3:16142–16149CrossRef
Metadata
Title
Large-scale and template-free synthesis of hierarchically porous MnCo2O4.5 as anode material for lithium-ion batteries with enhanced electrochemical performance
Authors
Xudong Hu
Simin Zhang
Xin Li
Xiaohong Sun
Shu Cai
Huiming Ji
Feng Hou
Chunming Zheng
Wenbin Hu
Publication date
11-01-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 9/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0767-5

Other articles of this Issue 9/2017

Journal of Materials Science 9/2017 Go to the issue

Premium Partners