Skip to main content
Top

2021 | OriginalPaper | Chapter

Large-Scale, Dynamic and Distributed Coalition Formation with Spatial and Temporal Constraints

Authors : Luca Capezzuto, Danesh Tarapore, Sarvapali D. Ramchurn

Published in: Multi-Agent Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Coalition Formation with Spatial and Temporal constraints Problem (CFSTP) is a multi-agent task allocation problem in which few agents have to perform many tasks, each with its deadline and workload. To maximize the number of completed tasks, the agents need to cooperate by forming, disbanding and reforming coalitions. The original mathematical programming formulation of the CFSTP is difficult to implement, since it is lengthy and based on the problematic Big-M method. In this paper, we propose a compact and easy-to-implement formulation. Moreover, we design D-CTS, a distributed version of the state-of-the-art CFSTP algorithm. Using public London Fire Brigade records, we create a dataset with 347588 tasks and a test framework that simulates the mobilization of firefighters in dynamic environments. In problems with up to 150 agents and 3000 tasks, compared to DSA-SDP, a state-of-the-art distributed algorithm, D-CTS completes \(3.79\% \pm [42.22\%, 1.96\%]\) more tasks, and is one order of magnitude more efficient in terms of communication overhead and time complexity. D-CTS sets the first large-scale, dynamic and distributed CFSTP benchmark.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Also referred to as open systems [13]. For brevity, we call them dynamic environments.
 
4
Based on an Intel Xeon E5-2670 processor (octa-core 2.6 GHz with Hyper-Threading).
 
Literature
1.
go back to reference Alexander, D.E.: Principles of Emergency Planning and Management. Oxford University Press, Oxford (2002) Alexander, D.E.: Principles of Emergency Planning and Management. Oxford University Press, Oxford (2002)
2.
go back to reference Baker, C.A.B., Ramchurn, S., Teacy, W.L., Jennings, N.R.: Planning search and rescue missions for UAV teams. In: ECAI, pp. 1777–1782 (2016) Baker, C.A.B., Ramchurn, S., Teacy, W.L., Jennings, N.R.: Planning search and rescue missions for UAV teams. In: ECAI, pp. 1777–1782 (2016)
5.
go back to reference Capezzuto, L., Tarapore, D., Ramchurn, S.D.: Anytime and efficient multi-agent coordination for disaster response. SN Comput. Sci. 2(165) (2021, online) Capezzuto, L., Tarapore, D., Ramchurn, S.D.: Anytime and efficient multi-agent coordination for disaster response. SN Comput. Sci. 2(165) (2021, online)
6.
go back to reference Capezzuto, L., Tarapore, D., Ramchurn, S.D.: Multi-agent routing and scheduling through coalition formation. In: OptLearnMAS-21 (2021) Capezzuto, L., Tarapore, D., Ramchurn, S.D.: Multi-agent routing and scheduling through coalition formation. In: OptLearnMAS-21 (2021)
8.
go back to reference Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)MATH Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)MATH
9.
go back to reference Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of low-power embedded devices using the max-sum algorithm. In: AAMAS, vol. 2, pp. 639–646 (2008) Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of low-power embedded devices using the max-sum algorithm. In: AAMAS, vol. 2, pp. 639–646 (2008)
10.
go back to reference Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization problems and applications: a survey. JAIR 61, 623–698 (2018)MathSciNetCrossRef Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization problems and applications: a survey. JAIR 61, 623–698 (2018)MathSciNetCrossRef
11.
go back to reference Griva, I., Nash, S.G., Sofer, A.: Linear and Nonlinear Optimization. Society for Industrial and Applied Mathematics, 2nd edn. (2009) Griva, I., Nash, S.G., Sofer, A.: Linear and Nonlinear Optimization. Society for Industrial and Applied Mathematics, 2nd edn. (2009)
12.
go back to reference Guerrero, J., Oliver, G., Valero, O.: Multi-robot coalitions formation with deadlines: complexity analysis and solutions. PloS one 12(1), e0170659 (2017)CrossRef Guerrero, J., Oliver, G., Valero, O.: Multi-robot coalitions formation with deadlines: complexity analysis and solutions. PloS one 12(1), e0170659 (2017)CrossRef
13.
go back to reference Hewitt, C.: The Challenge of Open Systems, pp. 383–395. Cambridge University Press, Cambridge (1990) Hewitt, C.: The Challenge of Open Systems, pp. 383–395. Cambridge University Press, Cambridge (1990)
14.
go back to reference Junges, R., Bazzan, A.L.C.: Evaluating the performance of DCOP algorithms in a real world, dynamic problem. In: AAMAS, vol. 2, pp. 599–606 (2008) Junges, R., Bazzan, A.L.C.: Evaluating the performance of DCOP algorithms in a real world, dynamic problem. In: AAMAS, vol. 2, pp. 599–606 (2008)
15.
go back to reference Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for approximate distributed constraint optimization with quality bounds. In: AAMAS, pp. 133–140 (2010) Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for approximate distributed constraint optimization with quality bounds. In: AAMAS, pp. 133–140 (2010)
16.
go back to reference Kim, Y., Krainin, M., Lesser, V.: Effective variants of the max-sum algorithm for radar coordination and scheduling. In: IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, vol. 2, pp. 357–364 (2011) Kim, Y., Krainin, M., Lesser, V.: Effective variants of the max-sum algorithm for radar coordination and scheduling. In: IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, vol. 2, pp. 357–364 (2011)
18.
go back to reference Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)MathSciNetCrossRef Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)MathSciNetCrossRef
19.
go back to reference Leite, A.R., Enembreck, F., Barthes, J.P.A.: Distributed constraint optimization problems: review and perspectives. Expert Syst. Appl. 41(11), 5139–5157 (2014)CrossRef Leite, A.R., Enembreck, F., Barthes, J.P.A.: Distributed constraint optimization problems: review and perspectives. Expert Syst. Appl. 41(11), 5139–5157 (2014)CrossRef
20.
go back to reference Lesser, V., Corkill, D.: Challenges for multi-agent coordination theory based on empirical observations. In: AAMAS, pp. 1157–1160 (2014) Lesser, V., Corkill, D.: Challenges for multi-agent coordination theory based on empirical observations. In: AAMAS, pp. 1157–1160 (2014)
21.
go back to reference Loeliger, H.A.: An introduction to factor graphs. IEEE Sig. Proc. Mag. 21(1), 28–41 (2004)CrossRef Loeliger, H.A.: An introduction to factor graphs. IEEE Sig. Proc. Mag. 21(1), 28–41 (2004)CrossRef
24.
go back to reference Maheswaran, R.T., Pearce, J.P., Tambe, M.: Distributed algorithms for dcop: A graphical-game-based approach. In: International Conference on Parallel and Distributed Computing Systems, pp. 432–439 (2004) Maheswaran, R.T., Pearce, J.P., Tambe, M.: Distributed algorithms for dcop: A graphical-game-based approach. In: International Conference on Parallel and Distributed Computing Systems, pp. 432–439 (2004)
25.
go back to reference Maheswaran, R.T., Tambe, M., Bowring, E., Pearce, J.P., Varakantham, P.: Taking DCOP to the real world: efficient complete solutions for distributed multi-event scheduling. In: AAMAS, vol. 1, pp. 310–317 (2004) Maheswaran, R.T., Tambe, M., Bowring, E., Pearce, J.P., Varakantham, P.: Taking DCOP to the real world: efficient complete solutions for distributed multi-event scheduling. In: AAMAS, vol. 1, pp. 310–317 (2004)
26.
go back to reference Mahmud, S., Khan, M.M., Jennings, N.R.: On population-based algorithms for distributed constraint optimization problems. arXiv:2009.01625 (2020) Mahmud, S., Khan, M.M., Jennings, N.R.: On population-based algorithms for distributed constraint optimization problems. arXiv:​2009.​01625 (2020)
27.
go back to reference Mailler, R., Zheng, H., Ridgway, A.: Dynamic, distributed constraint solving and thermodynamic theory. JAAMAS 32(1), 188–217 (2018) Mailler, R., Zheng, H., Ridgway, A.: Dynamic, distributed constraint solving and thermodynamic theory. JAAMAS 32(1), 188–217 (2018)
30.
go back to reference Nelke, S.A., Okamoto, S., Zivan, R.: Market clearing-based dynamic multi-agent task allocation. ACM Trans. Int. Syst. Tech. 11(1), 1–25 (2020)CrossRef Nelke, S.A., Okamoto, S., Zivan, R.: Market clearing-based dynamic multi-agent task allocation. ACM Trans. Int. Syst. Tech. 11(1), 1–25 (2020)CrossRef
31.
go back to reference Nguyen, D.T., Yeoh, W., Lau, H.C., Zivan, R.: Distributed Gibbs: a linear-space sampling-based DCOP algorithm. JAIR 64, 705–748 (2019)MathSciNetCrossRef Nguyen, D.T., Yeoh, W., Lau, H.C., Zivan, R.: Distributed Gibbs: a linear-space sampling-based DCOP algorithm. JAIR 64, 705–748 (2019)MathSciNetCrossRef
32.
go back to reference Nunes, E., Manner, M., Mitiche, H., Gini, M.: A taxonomy for task allocation problems with temporal and ordering constraints. JRAS 90, 55–70 (2017) Nunes, E., Manner, M., Mitiche, H., Gini, M.: A taxonomy for task allocation problems with temporal and ordering constraints. JRAS 90, 55–70 (2017)
33.
go back to reference Okamoto, S., Zivan, R., Nahon, A., et al.: Distributed breakout: beyond satisfaction. In: IJCAI, pp. 447–453 (2016) Okamoto, S., Zivan, R., Nahon, A., et al.: Distributed breakout: beyond satisfaction. In: IJCAI, pp. 447–453 (2016)
34.
go back to reference Pearce, J.P., Tambe, M.: Quality guarantees on k-optimal solutions for distributed constraint optimization problems. In: IJCAI, pp. 1446–1451 (2007) Pearce, J.P., Tambe, M.: Quality guarantees on k-optimal solutions for distributed constraint optimization problems. In: IJCAI, pp. 1446–1451 (2007)
35.
go back to reference Petcu, A.: A class of algorithms for distributed constraint optimization. Ph.D. thesis, École polytechnique fédérale de Lausanne (2007) Petcu, A.: A class of algorithms for distributed constraint optimization. Ph.D. thesis, École polytechnique fédérale de Lausanne (2007)
37.
go back to reference Pujol-Gonzalez, M., Cerquides, J., Farinelli, A., Meseguer, P., Rodriguez-Aguilar, J.A.: Efficient inter-team task allocation in robocup rescue. In: AAMAS, pp. 413–421 (2015) Pujol-Gonzalez, M., Cerquides, J., Farinelli, A., Meseguer, P., Rodriguez-Aguilar, J.A.: Efficient inter-team task allocation in robocup rescue. In: AAMAS, pp. 413–421 (2015)
38.
go back to reference Rahwan, T., Michalak, T., Jennings, N.: A hybrid algorithm for coalition structure generation. In: AAAI, vol. 26 (2012) Rahwan, T., Michalak, T., Jennings, N.: A hybrid algorithm for coalition structure generation. In: AAAI, vol. 26 (2012)
39.
go back to reference Rahwan, T., Michalak, T.P., Wooldridge, M., Jennings, N.R.: Coalition structure generation: a survey. AI 229, 139–174 (2015)MathSciNetMATH Rahwan, T., Michalak, T.P., Wooldridge, M., Jennings, N.R.: Coalition structure generation: a survey. AI 229, 139–174 (2015)MathSciNetMATH
40.
go back to reference Rahwan, T., Ramchurn, S.D., Jennings, N.R., Giovannucci, A.: An anytime algorithm for optimal coalition structure generation. JAIR 34, 521–567 (2009)MathSciNetCrossRef Rahwan, T., Ramchurn, S.D., Jennings, N.R., Giovannucci, A.: An anytime algorithm for optimal coalition structure generation. JAIR 34, 521–567 (2009)MathSciNetCrossRef
41.
go back to reference Ramchurn, S.D., Farinelli, A., Macarthur, K.S., Jennings, N.R.: Decentralized coordination in robocup rescue. Comput. J. 53(9), 1447–1461 (2010)CrossRef Ramchurn, S.D., Farinelli, A., Macarthur, K.S., Jennings, N.R.: Decentralized coordination in robocup rescue. Comput. J. 53(9), 1447–1461 (2010)CrossRef
42.
go back to reference Ramchurn, S.D., Polukarov, M., Farinelli, A., Truong, C., Jennings, N.R.: Coalition formation with spatial and temporal constraints. In: AAMAS, pp. 1181–1188 (2010) Ramchurn, S.D., Polukarov, M., Farinelli, A., Truong, C., Jennings, N.R.: Coalition formation with spatial and temporal constraints. In: AAMAS, pp. 1181–1188 (2010)
43.
go back to reference Ramchurn, S.D., et al.: Human-agent collaboration for disaster response. JAAMAS 30(1), 82–111 (2016) Ramchurn, S.D., et al.: Human-agent collaboration for disaster response. JAAMAS 30(1), 82–111 (2016)
44.
go back to reference Ross, G.T., Soland, R.M.: A branch and bound algorithm for the generalized assignment problem. Math. Program. 8(1), 91–103 (1975)MathSciNetCrossRef Ross, G.T., Soland, R.M.: A branch and bound algorithm for the generalized assignment problem. Math. Program. 8(1), 91–103 (1975)MathSciNetCrossRef
45.
go back to reference Stankovic, J.A., Spuri, M., Ramamritham, K., Buttazzo, G.C.: Deadline Scheduling for Real-time Systems: EDF and Related Algorithms, vol. 460. Springer, Heidelberg (2013). Reprint of the original 1998 editionMATH Stankovic, J.A., Spuri, M., Ramamritham, K., Buttazzo, G.C.: Deadline Scheduling for Real-time Systems: EDF and Related Algorithms, vol. 460. Springer, Heidelberg (2013). Reprint of the original 1998 editionMATH
46.
go back to reference Tarapore, D., Groß, R., Zauner, K.P.: Sparse robot swarms: moving swarms to real-world applications. Front. Robot. AI 7, 83 (2020)CrossRef Tarapore, D., Groß, R., Zauner, K.P.: Sparse robot swarms: moving swarms to real-world applications. Front. Robot. AI 7, 83 (2020)CrossRef
48.
go back to reference Vieira, R., Moreira, Á.F., Wooldridge, M., Bordini, R.H.: On the formal semantics of speech-act based communication in an agent-oriented programming language. JAIR 29, 221–267 (2007)CrossRef Vieira, R., Moreira, Á.F., Wooldridge, M., Bordini, R.H.: On the formal semantics of speech-act based communication in an agent-oriented programming language. JAIR 29, 221–267 (2007)CrossRef
49.
go back to reference Vinyals, M., et al.: Quality guarantees for region optimal DCOP algorithms. In: AAMAS, vol. 1, pp. 133–140 (2011) Vinyals, M., et al.: Quality guarantees for region optimal DCOP algorithms. In: AAMAS, vol. 1, pp. 133–140 (2011)
50.
51.
go back to reference Yokoo, M., Hirayama, K.: Distributed breakout algorithm for solving distributed constraint satisfaction problems. In: Proceedings of the 2nd International Conference on MAS, pp. 401–408. MIT Press Cambridge (1996) Yokoo, M., Hirayama, K.: Distributed breakout algorithm for solving distributed constraint satisfaction problems. In: Proceedings of the 2nd International Conference on MAS, pp. 401–408. MIT Press Cambridge (1996)
52.
go back to reference Yokoo, M., Ishida, T., Durfee, E.H., Kuwabara, K.: Distributed constraint satisfaction for formalizing distributed problem solving. In: Proceedings of the 12th International Conference on Distributed Computing System, pp. 614–621. IEEE (1992) Yokoo, M., Ishida, T., Durfee, E.H., Kuwabara, K.: Distributed constraint satisfaction for formalizing distributed problem solving. In: Proceedings of the 12th International Conference on Distributed Computing System, pp. 614–621. IEEE (1992)
53.
go back to reference Zhang, W., Wang, G., Xing, Z., Wittenburg, L.: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks. AI 161(1–2), 55–87 (2005)MathSciNetMATH Zhang, W., Wang, G., Xing, Z., Wittenburg, L.: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks. AI 161(1–2), 55–87 (2005)MathSciNetMATH
54.
go back to reference Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed constraint optimization. AI 212, 1–26 (2014)MathSciNetMATH Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed constraint optimization. AI 212, 1–26 (2014)MathSciNetMATH
55.
go back to reference Zivan, R., Parash, T., Cohen, L., Peled, H., Okamoto, S.: Balancing exploration and exploitation in incomplete min/max-sum inference for distributed constraint optimization. JAAMAS 31(5), 1165–1207 (2017) Zivan, R., Parash, T., Cohen, L., Peled, H., Okamoto, S.: Balancing exploration and exploitation in incomplete min/max-sum inference for distributed constraint optimization. JAAMAS 31(5), 1165–1207 (2017)
Metadata
Title
Large-Scale, Dynamic and Distributed Coalition Formation with Spatial and Temporal Constraints
Authors
Luca Capezzuto
Danesh Tarapore
Sarvapali D. Ramchurn
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-82254-5_7

Premium Partner