Skip to main content
Top
Published in: Journal of Materials Science 9/2018

17-01-2018 | Electronic materials

Layer-by-layer nanostructured supercapacitor electrodes consisting of ZnO nanoparticles and multi-walled carbon nanotubes

Authors: Vinícius O. Fávero, Danilo A. Oliveira, Jodie L. Lutkenhaus, José R. Siqueira Jr.

Published in: Journal of Materials Science | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The study of nanostructures combining carbon and metal oxide materials in a synergistic way is propitious to achieve new nanocomposites with enhanced capacitive electrochemical properties for energy storage applications such as supercapacitors. Here, we investigate the electrochemical properties of electrodes containing nanostructured films made from layer-by-layer (LbL) multilayers consisting of ZnO nanoparticles (ZnONPs) complexed with polyallylamine hydrochloride (PAH) and multi-walled carbon nanotubes (MWNTs) for supercapacitor applications. The surface of PAH–ZnO/MWNT LbL films was analyzed by atomic force microscopy (AFM), which displayed a nanofilm with high superficial area and porosity due to the high interconnection of MWNTs and ZnONPs in the film’s multilayers. Cyclic voltammetry and galvanostatic charge–discharge measurements were used to evaluate the electrochemical properties of the films. A high observed areal capacitance of ca. 1000 μF/cm2 was achieved for a 10-bilayer LbL film at a current density of 1.0 × 10−5 A/cm2. Furthermore, the PAH–ZnO/MWNT LbL film exhibited a high cycling stability with a capacitive retention of 96% over 1000 cycles. These results demonstrate that the nanostructured PAH–ZnO/MWNT LbL film may be explored as supercapacitors electrodes for energy storage applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kwon SR, Harris J, Zhou T, Loufakis D, Boyd JD, Lutkenhaus JL (2017) Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power. ACS Nano 11:6682–6690CrossRef Kwon SR, Harris J, Zhou T, Loufakis D, Boyd JD, Lutkenhaus JL (2017) Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power. ACS Nano 11:6682–6690CrossRef
2.
go back to reference Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2:159–173CrossRef Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2:159–173CrossRef
3.
go back to reference Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2:213–234CrossRef Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2:213–234CrossRef
4.
go back to reference Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88CrossRef Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88CrossRef
5.
go back to reference Lee SW, Kim J, Chen S, Hammond PT, Shao-Horn Y (2010) Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4:3889–3896CrossRef Lee SW, Kim J, Chen S, Hammond PT, Shao-Horn Y (2010) Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4:3889–3896CrossRef
6.
go back to reference Liu W, Yan X, Xue Q (2013) Multilayer hybrid films consisting of alternating graphene and titanium dioxide for high-performance supercapacitors. J Mater Chem C 1:1413–1422CrossRef Liu W, Yan X, Xue Q (2013) Multilayer hybrid films consisting of alternating graphene and titanium dioxide for high-performance supercapacitors. J Mater Chem C 1:1413–1422CrossRef
7.
go back to reference Ariga K, Minami K, Shrestha LK (2016) Nanoarchitectonics for carbon-material-based sensors. Analyst 14:2629–2638CrossRef Ariga K, Minami K, Shrestha LK (2016) Nanoarchitectonics for carbon-material-based sensors. Analyst 14:2629–2638CrossRef
8.
go back to reference Oliveira ON Jr, Iost RM, Siqueira JR Jr, Crespilho FN, Caseli L (2014) Nanomaterials for diagnosis: challenges and applications in smart devices based on molecular recognition. ACS Appl Mater Interfaces 6:14745–14766CrossRef Oliveira ON Jr, Iost RM, Siqueira JR Jr, Crespilho FN, Caseli L (2014) Nanomaterials for diagnosis: challenges and applications in smart devices based on molecular recognition. ACS Appl Mater Interfaces 6:14745–14766CrossRef
9.
go back to reference Jeon J-W, Kwon S-R, Lutkenhaus JL (2015) polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. J Mater Chem A 3:3757–3767CrossRef Jeon J-W, Kwon S-R, Lutkenhaus JL (2015) polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. J Mater Chem A 3:3757–3767CrossRef
10.
go back to reference Shao L, Jeon J-W, Lutkenhaus JL (2014) Polyaniline nanofiber/vanadium pentoxide sprayed layer-by-layer electrodes for energy storage. J Mater Chem A 2:14421–14428CrossRef Shao L, Jeon J-W, Lutkenhaus JL (2014) Polyaniline nanofiber/vanadium pentoxide sprayed layer-by-layer electrodes for energy storage. J Mater Chem A 2:14421–14428CrossRef
11.
go back to reference Jeon J-W, O’Neal J, Shao L, Lutkenhaus JL (2013) Charge storage in polymer acid-doped polyaniline-based layer-by-layer electrodes. ACS Appl Mater Interfaces 5:10127–10136CrossRef Jeon J-W, O’Neal J, Shao L, Lutkenhaus JL (2013) Charge storage in polymer acid-doped polyaniline-based layer-by-layer electrodes. ACS Appl Mater Interfaces 5:10127–10136CrossRef
12.
go back to reference Ariga K, Hill JP, Ji QM (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9:2319–2340CrossRef Ariga K, Hill JP, Ji QM (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9:2319–2340CrossRef
14.
go back to reference Kang Z, Gu Y, Yan X, Bai Z, Liu Y, Liu S, Zhang X, Zhang Z, Zhang X, Zhang Y (2015) Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application. Biosens Bioelectron 64:499–504CrossRef Kang Z, Gu Y, Yan X, Bai Z, Liu Y, Liu S, Zhang X, Zhang Z, Zhang X, Zhang Y (2015) Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application. Biosens Bioelectron 64:499–504CrossRef
16.
go back to reference Pelicano CM, Yanagi H (2017) Efficient solid-state perovskite solar cells based on nanostructured zinc oxide designed by strategic low temperature water oxidation. J Mater Chem C 5:8059–8070CrossRef Pelicano CM, Yanagi H (2017) Efficient solid-state perovskite solar cells based on nanostructured zinc oxide designed by strategic low temperature water oxidation. J Mater Chem C 5:8059–8070CrossRef
18.
go back to reference Sun J, Zan P, Ye L, Yang X, Zhao L (2017) Superior performance of ZnCo2O4/ZnO@ multiwall carbon nanotubes with laminated shape assembled as highly practical all-solid-state asymmetric supercapacitors. J Mater Chem A 5:9815–9823CrossRef Sun J, Zan P, Ye L, Yang X, Zhao L (2017) Superior performance of ZnCo2O4/ZnO@ multiwall carbon nanotubes with laminated shape assembled as highly practical all-solid-state asymmetric supercapacitors. J Mater Chem A 5:9815–9823CrossRef
19.
go back to reference Madhu R, Veeramani V, Chen S-M, Veerakumar P, Liu S-B, Miyamoto N (2016) Functional porous carbon–ZnO nanocomposites for high-performance biosensors and energy storage applications. Phys Chem Chem Phys 18:16466–16475CrossRef Madhu R, Veeramani V, Chen S-M, Veerakumar P, Liu S-B, Miyamoto N (2016) Functional porous carbon–ZnO nanocomposites for high-performance biosensors and energy storage applications. Phys Chem Chem Phys 18:16466–16475CrossRef
20.
go back to reference Ma W, Shi Q, Nan H, Hu Q, Zheng X, Geng B, Zhang X (2015) Hierarchical ZnO@MnO2@PPy ternary core–shell nanorod arrays: an efficient integration of active materials for energy storage. RSC Adv 5:39864–39869CrossRef Ma W, Shi Q, Nan H, Hu Q, Zheng X, Geng B, Zhang X (2015) Hierarchical ZnO@MnO2@PPy ternary core–shell nanorod arrays: an efficient integration of active materials for energy storage. RSC Adv 5:39864–39869CrossRef
21.
go back to reference Aravinda LS, Nagaraja KK, Nagaraja HS, Bhat KU, Bhat BR (2013) ZnO/carbon nanotube nanocomposite for high energy density supercapacitors. Electrochim Acta 95:119–124CrossRef Aravinda LS, Nagaraja KK, Nagaraja HS, Bhat KU, Bhat BR (2013) ZnO/carbon nanotube nanocomposite for high energy density supercapacitors. Electrochim Acta 95:119–124CrossRef
22.
go back to reference Sousa CJA, Pereira MC, Almeida RJ, Loyola AM, Silva ACA, Dantas NO (2014) Synthesis and characterization of zinc oxide nanocrystals and histologic evaluation of their biocompatibility by means of intraosseous implants. Int Endod J 47:416–424CrossRef Sousa CJA, Pereira MC, Almeida RJ, Loyola AM, Silva ACA, Dantas NO (2014) Synthesis and characterization of zinc oxide nanocrystals and histologic evaluation of their biocompatibility by means of intraosseous implants. Int Endod J 47:416–424CrossRef
23.
go back to reference Dantas NO, Damigo L, Qu F, Cunha JFR, Silva RS, Miranda KL, Vilela EC, Sartoratto PPC, Morais PC (2008) Raman investigation of ZnO and Zn1−xMnxO nanocrystals synthesized by precipitation method. J Non Cryst Solids 354:4827–4829CrossRef Dantas NO, Damigo L, Qu F, Cunha JFR, Silva RS, Miranda KL, Vilela EC, Sartoratto PPC, Morais PC (2008) Raman investigation of ZnO and Zn1−xMnxO nanocrystals synthesized by precipitation method. J Non Cryst Solids 354:4827–4829CrossRef
24.
go back to reference Dantas NO, Damigo L, Qu F, Silva RS, Sartoratto PPC, Miranda KL, Vilela EC, Pelegrini F, Morais PC (2008) Structural and magnetic properties of ZnO and Zn1−xMnxO nanocrystals. J Non Cryst Solids 354:4727–4729CrossRef Dantas NO, Damigo L, Qu F, Silva RS, Sartoratto PPC, Miranda KL, Vilela EC, Pelegrini F, Morais PC (2008) Structural and magnetic properties of ZnO and Zn1−xMnxO nanocrystals. J Non Cryst Solids 354:4727–4729CrossRef
25.
go back to reference Kwon SR, Elinski M, Batteas JD, Lutkenhaus JL (2017) Robust and flexible aramid nanofiber/graphene layer-by-layer electrodes. ACS Appl Mater Interfaces 9:17125–17135CrossRef Kwon SR, Elinski M, Batteas JD, Lutkenhaus JL (2017) Robust and flexible aramid nanofiber/graphene layer-by-layer electrodes. ACS Appl Mater Interfaces 9:17125–17135CrossRef
26.
go back to reference Siqueira JR Jr, Gasparotto LHS, Oliveira ON Jr, Zucolotto V (2008) Processing of electroactive nanostructured films incorporating carbon nanotubes and phthalocyanines for sensing. J Phys Chem C 112:9050–9055CrossRef Siqueira JR Jr, Gasparotto LHS, Oliveira ON Jr, Zucolotto V (2008) Processing of electroactive nanostructured films incorporating carbon nanotubes and phthalocyanines for sensing. J Phys Chem C 112:9050–9055CrossRef
27.
go back to reference Gasparotto LHS, Castelhano ALB, Silva ACA, Dantas NO, Oliveira ON Jr, Siqueira JR Jr (2014) Dendrimer–carbon nanotube layer-by-layer film as an efficient host matrix for electrogeneration of ptco electrocatalysts. Phys Chem Chem Phys 16:2384–2389CrossRef Gasparotto LHS, Castelhano ALB, Silva ACA, Dantas NO, Oliveira ON Jr, Siqueira JR Jr (2014) Dendrimer–carbon nanotube layer-by-layer film as an efficient host matrix for electrogeneration of ptco electrocatalysts. Phys Chem Chem Phys 16:2384–2389CrossRef
28.
go back to reference Gasparotto LHS, Castelhano ALB, Gabriel RC, Dantas NO, Oliveira ON Jr, Siqueira JR Jr (2013) Electrogeneration of platinum nanoparticles in a matrix of dendrimer/carbon nanotubes. Phys Chem Chem Phys 15:17887–17892CrossRef Gasparotto LHS, Castelhano ALB, Gabriel RC, Dantas NO, Oliveira ON Jr, Siqueira JR Jr (2013) Electrogeneration of platinum nanoparticles in a matrix of dendrimer/carbon nanotubes. Phys Chem Chem Phys 15:17887–17892CrossRef
29.
go back to reference Siqueira JR Jr, Gabriel RC, Zucolotto V, Silva ACA, Dantas NO, Gasparotto LHS (2012) Electrodeposition of catalytic and magnetic gold nanoparticles on dendrimer–carbon nanotube layer-by-layer films. Phys Chem Chem Phys 14:14340–14343CrossRef Siqueira JR Jr, Gabriel RC, Zucolotto V, Silva ACA, Dantas NO, Gasparotto LHS (2012) Electrodeposition of catalytic and magnetic gold nanoparticles on dendrimer–carbon nanotube layer-by-layer films. Phys Chem Chem Phys 14:14340–14343CrossRef
30.
go back to reference Siqueira JR Jr, Molinnus D, Beging S, Schöning MJ (2014) Incorporating a hybrid urease–carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection. Anal Chem 86:5370–5375CrossRef Siqueira JR Jr, Molinnus D, Beging S, Schöning MJ (2014) Incorporating a hybrid urease–carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection. Anal Chem 86:5370–5375CrossRef
31.
go back to reference Siqueira JR Jr, Werner CF, Bäcker M, Poghossian A, Zucolotto V, Oliveira ON Jr, Schöning MJ (2009) Layer-by-layer assembly of carbon nanotubes incorporated in light-addressable potentiometric sensors. J Phys Chem C 113:14765–14770CrossRef Siqueira JR Jr, Werner CF, Bäcker M, Poghossian A, Zucolotto V, Oliveira ON Jr, Schöning MJ (2009) Layer-by-layer assembly of carbon nanotubes incorporated in light-addressable potentiometric sensors. J Phys Chem C 113:14765–14770CrossRef
32.
go back to reference Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRef Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRef
33.
go back to reference Yoo JJ, Balakrishnan K, Huang JS, Meunier V, Sumpter BG, Srivastava A, Conway M, Reddy ALM, Yu J, Vajtai R, Ajayan PM (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11:1423–1427CrossRef Yoo JJ, Balakrishnan K, Huang JS, Meunier V, Sumpter BG, Srivastava A, Conway M, Reddy ALM, Yu J, Vajtai R, Ajayan PM (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11:1423–1427CrossRef
34.
go back to reference Yu D, Dai L (2010) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1:467–470CrossRef Yu D, Dai L (2010) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1:467–470CrossRef
35.
go back to reference Zhang Y, Li H, Pan L, Lu T, Sun Z (2009) Capacitive behavior of graphene–ZnO composite film for supercapacitors. J Electroanal Chem 634:68–71CrossRef Zhang Y, Li H, Pan L, Lu T, Sun Z (2009) Capacitive behavior of graphene–ZnO composite film for supercapacitors. J Electroanal Chem 634:68–71CrossRef
Metadata
Title
Layer-by-layer nanostructured supercapacitor electrodes consisting of ZnO nanoparticles and multi-walled carbon nanotubes
Authors
Vinícius O. Fávero
Danilo A. Oliveira
Jodie L. Lutkenhaus
José R. Siqueira Jr.
Publication date
17-01-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 9/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2010-4

Other articles of this Issue 9/2018

Journal of Materials Science 9/2018 Go to the issue

Premium Partners