Skip to main content
Top
Published in: Wireless Personal Communications 3/2021

05-09-2020

Leakage Reduction in 18 nm FinFET based 7T SRAM Cell using Self Controllable Voltage Level Technique

Authors: T. Santosh Kumar, Suman Lata Tripathi

Published in: Wireless Personal Communications | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As the technology is scaled the power consumption increases significantly, because of which the battery life of portable devices is reduced. Due to high power density, the increased power consumption becomes an obstacle for scaling of devices. Power optimization is the most significantly visible in future portable IC’s. As per increasing need for a low power circuit, the reduction in leakage current becomes very important aspect while designing any IC. The leakage can be reduced by altering the threshold voltage. Further as the technology is scaled FinFET is the alternate for CMOS with increased control of gate over the channel. In this paper a FinFET based 7T SRAM cell is proposed which is faster in its operation and consumes less power. In order to further reduce the leakage power, FinFET based 7T SRAM cell is designed using self-controllable voltage level (SVL) techniques. In this paper, an 18 nm FinFET based SRAM cell is designed using SVL circuit to reduce the leakage current and power. The proposed design has the least leakage current of 16.56 nA and leakage power of 11.59 nW by using the combined technique of LSVL and USVL. All the circuit design and simulation have been done in Cadence Virtuoso using 18 nM FinFET technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bowman, K. A., Duvall, S. G., & Meindl, J. D. (2002). Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration. IEEE Journal of Solid-State Circuits, 37(2), 183.CrossRef Bowman, K. A., Duvall, S. G., & Meindl, J. D. (2002). Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration. IEEE Journal of Solid-State Circuits, 37(2), 183.CrossRef
2.
go back to reference kumar, T. S., & Tripathi, S. L. (2019). Implementation of CMOS SRAM Cells in 7, 8, 10 and 12-transistor topologies and their performance comparison. International Journal of Engineering and Advanced Technology, 8(2S2), 227–229. kumar, T. S., & Tripathi, S. L. (2019). Implementation of CMOS SRAM Cells in 7, 8, 10 and 12-transistor topologies and their performance comparison. International Journal of Engineering and Advanced Technology, 8(2S2), 227–229.
3.
go back to reference Rathod, S. S., Saxena, A. K., & Dasgupta, S. (2010). A proposed DG-FinFET based SRAM cell design with RadHard capabilities. Microelectronics Reliability, 50(8), 1039–1190.CrossRef Rathod, S. S., Saxena, A. K., & Dasgupta, S. (2010). A proposed DG-FinFET based SRAM cell design with RadHard capabilities. Microelectronics Reliability, 50(8), 1039–1190.CrossRef
4.
go back to reference Kushwah, C. B., Vishvakarma, S. K., & Dwivedi, D. (2016). A 20nm robust single-ended boostless 7T FinFET sub-threshold SRAM cell under process–voltage–temperature variation. Microelectronics Journal, 51, 75–88.CrossRef Kushwah, C. B., Vishvakarma, S. K., & Dwivedi, D. (2016). A 20nm robust single-ended boostless 7T FinFET sub-threshold SRAM cell under process–voltage–temperature variation. Microelectronics Journal, 51, 75–88.CrossRef
5.
go back to reference Sil, A., Bakkamanthala, S., karlapudi, S., & Bayoumi, M. (2012). Highly Stable, Dual-port, Sub-threshold 7T SRAM Cell for Ultra-low Power Application. In IEEE International NEWCAS Conference (pp. 493–496). Sil, A., Bakkamanthala, S., karlapudi, S., & Bayoumi, M. (2012). Highly Stable, Dual-port, Sub-threshold 7T SRAM Cell for Ultra-low Power Application. In IEEE International NEWCAS Conference (pp. 493–496).
6.
go back to reference Ansari, M., Afzali-Kusha, H., Ebrahimi, B., Navabi, Z., Afzali-Kushaa, A., & Pedram, M. (2015). A near-threshold 7T SRAM cell with high write and read margins and low write time for sub-20 nm FinFET technologies. Integration the VLSI Journal, 50, 91–106.CrossRef Ansari, M., Afzali-Kusha, H., Ebrahimi, B., Navabi, Z., Afzali-Kushaa, A., & Pedram, M. (2015). A near-threshold 7T SRAM cell with high write and read margins and low write time for sub-20 nm FinFET technologies. Integration the VLSI Journal, 50, 91–106.CrossRef
7.
go back to reference kumar, V., Mahor, V., pattanaik, M. (2016). Novel Ultra Low Leakage FinFET Based SRAM Cell. In IEEE International Symposium on Nanoelectronic and Information Systems (pp. 89–92). kumar, V., Mahor, V., pattanaik, M. (2016). Novel Ultra Low Leakage FinFET Based SRAM Cell. In IEEE International Symposium on Nanoelectronic and Information Systems (pp. 89–92).
8.
go back to reference Endo, K., Shin-Ichioinchi, Ishikawa, Y., Liu, Y., Matsukawa, T., Sakamoto, K., Masahara, M., Tsukada, J., Ishii, K., Yamauchi, H., & Suzuki, E., (2009) Independent-Double-Gate FinFET SRAM for leakage current reduction. IEEE Electron Device letters, 30(7), 757–759.CrossRef Endo, K., Shin-Ichioinchi, Ishikawa, Y., Liu, Y., Matsukawa, T., Sakamoto, K., Masahara, M., Tsukada, J., Ishii, K., Yamauchi, H., & Suzuki, E., (2009) Independent-Double-Gate FinFET SRAM for leakage current reduction. IEEE Electron Device letters, 30(7), 757–759.CrossRef
9.
go back to reference Tripathi, S.L., Mishra, R., Narendra, V., & Mishra, R.A. (2013) High performance Bulk FinFET with Bottom Spacer. In IEEE CONECCT (pp.1–5). Tripathi, S.L., Mishra, R., Narendra, V., & Mishra, R.A. (2013) High performance Bulk FinFET with Bottom Spacer. In IEEE CONECCT (pp.1–5).
10.
go back to reference Gavaskar, K., & Ragupathy, U. S. (2019). Low power self-controllable voltage level and low swing logic based 11T SRAM cell for high speed CMOS circuits. Analog Integrated Circuits and Signal Processing, 100(1), 61–77.CrossRef Gavaskar, K., & Ragupathy, U. S. (2019). Low power self-controllable voltage level and low swing logic based 11T SRAM cell for high speed CMOS circuits. Analog Integrated Circuits and Signal Processing, 100(1), 61–77.CrossRef
11.
go back to reference Satish, M. N., Vasundara Patel K. S. (2019). Power Reduction in FinFET Half Adder using SVL Technique in 32 nm Technology. In IEEE MEC International Conference on Big Data and Smart City (ICBDSC) Satish, M. N., Vasundara Patel K. S. (2019). Power Reduction in FinFET Half Adder using SVL Technique in 32 nm Technology. In IEEE MEC International Conference on Big Data and Smart City (ICBDSC)
12.
go back to reference Birla, S., Shukla, N. K., Pattanaik, M., & Singh, R. K. (2010). Device-and-circuit-design-challenges-for-low-leakage-SRAM for ultra low power applications. Canadian Journal on Electrical & Electronics Engineering, 1(7), 156–167. Birla, S., Shukla, N. K., Pattanaik, M., & Singh, R. K. (2010). Device-and-circuit-design-challenges-for-low-leakage-SRAM for ultra low power applications. Canadian Journal on Electrical & Electronics Engineering, 1(7), 156–167.
13.
go back to reference Gupta, D. C., & Raman, A. (2012). Analysis of leakage current reduction techniques in SRAM cell in 90 nm CMOS technology. IJCA, 50(19), 18–22.CrossRef Gupta, D. C., & Raman, A. (2012). Analysis of leakage current reduction techniques in SRAM cell in 90 nm CMOS technology. IJCA, 50(19), 18–22.CrossRef
14.
go back to reference Duari, C., & Birla, S. (2018). Leakage power improvement in SRAM cell with clamping diode using reverse body bias technique. In International Conference on Data Engineering and Communication Technology, Advances in Intelligent Systems and Computing (Vol. 828). Springer. Duari, C., & Birla, S. (2018). Leakage power improvement in SRAM cell with clamping diode using reverse body bias technique. In International Conference on Data Engineering and Communication Technology, Advances in Intelligent Systems and Computing (Vol. 828). Springer.
15.
go back to reference Manorama, Khandelwal, S., Akashe, S. (2013). Design of a FinFET based inverter using MTCMOS and SVL leakage reduction technique. In: Students Conference on Engineering and Systems (SCES) (pp. 12–14) Manorama, Khandelwal, S., Akashe, S. (2013). Design of a FinFET based inverter using MTCMOS and SVL leakage reduction technique. In: Students Conference on Engineering and Systems (SCES) (pp. 12–14)
16.
go back to reference Akashe, S., & Sharma, S. (2013). Leakage current reduction techniques for 7T SRAM cell in 45 nm technology. Wireless Personal Communication, 71, 123–136.CrossRef Akashe, S., & Sharma, S. (2013). Leakage current reduction techniques for 7T SRAM cell in 45 nm technology. Wireless Personal Communication, 71, 123–136.CrossRef
17.
go back to reference Enomoto, T., Oka, Y., & Shikano, H. (2003). Self-controllable voltage level (SVL) circuit and its low-power high-speed CMOS circuit applications. IEEE Journal of Solid State Circuits, 38(7), 1220–1226.CrossRef Enomoto, T., Oka, Y., & Shikano, H. (2003). Self-controllable voltage level (SVL) circuit and its low-power high-speed CMOS circuit applications. IEEE Journal of Solid State Circuits, 38(7), 1220–1226.CrossRef
18.
go back to reference Akashe, S., Mishra, M., & Sharma, S. (2012). Self-controllable voltage level circuit for low power, high speed 7T SRAM cell at 45 nm technology. In IEEE Conference on Engineering and Systems (pp. 1–5). Akashe, S., Mishra, M., & Sharma, S. (2012). Self-controllable voltage level circuit for low power, high speed 7T SRAM cell at 45 nm technology. In IEEE Conference on Engineering and Systems (pp. 1–5).
19.
go back to reference Kumar N. S., Sudhanva N. G., Hande V. S., Sajjan M. V., Kumar C. S. H., Kariyappa B. S., SRAM design using memristor and self-controllable voltage (SVL) technique. In International Conference on Computational Intelligence and Data Engineering. Lecture Notes on Data Engineering and Communications Technologies, Springer, Vol. 9, pp. 29–39. Kumar N. S., Sudhanva N. G., Hande V. S., Sajjan M. V., Kumar C. S. H., Kariyappa B. S., SRAM design using memristor and self-controllable voltage (SVL) technique. In International Conference on Computational Intelligence and Data Engineering. Lecture Notes on Data Engineering and Communications Technologies, Springer, Vol. 9, pp. 29–39.
20.
go back to reference Akashe, S., & Shrivas, J. (2013). Optimization of leakage current and leakage power of full adder by using self-controlled voltage level technique in nanometer regime. Quantum Matter, 2(2), 137–139.CrossRef Akashe, S., & Shrivas, J. (2013). Optimization of leakage current and leakage power of full adder by using self-controlled voltage level technique in nanometer regime. Quantum Matter, 2(2), 137–139.CrossRef
21.
go back to reference Mohanty, S., Singh, J., Kougians, E., & Pradhan, D. (2012). Statistical DOE-ILP based power-performance-process (P3) optimization of nano- CMOS SRAM INTIGRATION. The VLSI Journal, 45, 33–45.CrossRef Mohanty, S., Singh, J., Kougians, E., & Pradhan, D. (2012). Statistical DOE-ILP based power-performance-process (P3) optimization of nano- CMOS SRAM INTIGRATION. The VLSI Journal, 45, 33–45.CrossRef
Metadata
Title
Leakage Reduction in 18 nm FinFET based 7T SRAM Cell using Self Controllable Voltage Level Technique
Authors
T. Santosh Kumar
Suman Lata Tripathi
Publication date
05-09-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07765-6

Other articles of this Issue 3/2021

Wireless Personal Communications 3/2021 Go to the issue