Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

Learning Enabled Constrained Black-Box Optimization

Authors : F. Archetti, A. Candelieri, B. G. Galuzzi, R. Perego

Published in: Black Box Optimization, Machine Learning, and No-Free Lunch Theorems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter looks at the issue of black-box constrained optimization where both the objective function and the constraints are unknown and can only be observed pointwise. Both deterministic and probabilistic surrogate models are considered: the latter, more specifically analysed, are based on Gaussian Processes and Bayesian Optimization to handle the exploration–exploitation dilemma and improve sample efficiency. Particularly challenging is the case when the feasible region might be disconnected and the objective function cannot be evaluated outside the feasible region; this situation, known as “partially defined objective function” or “non-computable domains”, requires a novel approach: a first phase is based on the SVM classification in order to learn the feasible region, and a second phase, optimization, is based on a Gaussian Process. This approach is the main focus of this chapter that analyses modelling and computational issues and demonstrates the sample efficiency of the resulting algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adam, S.P., Alexandropoulus S.A.N., Pardalos, P., Vrahatis, M.: No free lunch theorem: A review. In: Approximation and Optimization, pp. 57–82. Springer, Berlin (2019) Adam, S.P., Alexandropoulus S.A.N., Pardalos, P., Vrahatis, M.: No free lunch theorem: A review. In: Approximation and Optimization, pp. 57–82. Springer, Berlin (2019)
2.
go back to reference Akimoto, Y., Auger, A., Hansen, N.: CMA-ES and advanced adaptation mechanisms. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 533–562. ACM, New York (2016) Akimoto, Y., Auger, A., Hansen, N.: CMA-ES and advanced adaptation mechanisms. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 533–562. ACM, New York (2016)
3.
go back to reference Alexandropoulos, S.A.N., Aridas, C.K., Kotsiantis, S.B., Vrahatis, M.N.: Multi-objective evolutionary optimization algorithms for machine learning: A recent survey. In: Approximation and Optimization, pp. 35–55. Springer, Cham (2019) Alexandropoulos, S.A.N., Aridas, C.K., Kotsiantis, S.B., Vrahatis, M.N.: Multi-objective evolutionary optimization algorithms for machine learning: A recent survey. In: Approximation and Optimization, pp. 35–55. Springer, Cham (2019)
4.
go back to reference Amaran, S., Sahinidis, N.V., Sharda, B., Bury, S.J.: Simulation optimization: a review of algorithms and applications. Ann. Operat. Res. 240(1), 351–380 (2016)MathSciNetMATHCrossRef Amaran, S., Sahinidis, N.V., Sharda, B., Bury, S.J.: Simulation optimization: a review of algorithms and applications. Ann. Operat. Res. 240(1), 351–380 (2016)MathSciNetMATHCrossRef
6.
go back to reference Archetti, F., Candelieri, A.: Bayesian Optimization and Data Science. SpringerBriefs in Optimization. Springer International Publishing, New York (2019)MATHCrossRef Archetti, F., Candelieri, A.: Bayesian Optimization and Data Science. SpringerBriefs in Optimization. Springer International Publishing, New York (2019)MATHCrossRef
7.
go back to reference Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning Research, 3(Nov), 397–422MathSciNetMATH Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning Research, 3(Nov), 397–422MathSciNetMATH
8.
go back to reference Bachoc, F., Helbert, C., Picheny, V.: Gaussian process optimization with failures: classification and convergence proof. J. Global Optim. 78, 483–506 (2019). hal.archives-ouvertes.fr Bachoc, F., Helbert, C., Picheny, V.: Gaussian process optimization with failures: classification and convergence proof. J. Global Optim. 78, 483–506 (2019). hal.archives-ouvertes.fr
9.
go back to reference Basudhar, A., Dribusch, C., Lacaze, S., Missoum, S.: Constrained efficient global optimization with support vector machines. Struct. Multidiscipl. Optim. 46(2), 201–221 (2012)MATHCrossRef Basudhar, A., Dribusch, C., Lacaze, S., Missoum, S.: Constrained efficient global optimization with support vector machines. Struct. Multidiscipl. Optim. 46(2), 201–221 (2012)MATHCrossRef
10.
go back to reference Bernardo, J., Bayarri, M., Berger, J., Dawid, A., Heckerman, D., Smith, A., West, M.: Optimization under unknown constraints. Bayesian Stat. 9(9), 229 (2011)MathSciNet Bernardo, J., Bayarri, M., Berger, J., Dawid, A., Heckerman, D., Smith, A., West, M.: Optimization under unknown constraints. Bayesian Stat. 9(9), 229 (2011)MathSciNet
11.
go back to reference Bhosekar, A., Ierapetritou, M.: Advances in surrogate based modeling, feasibility analysis, and optimization: a review. Comput. Chem. Eng. 108, 250–267 (2018)CrossRef Bhosekar, A., Ierapetritou, M.: Advances in surrogate based modeling, feasibility analysis, and optimization: a review. Comput. Chem. Eng. 108, 250–267 (2018)CrossRef
12.
go back to reference Bouhlel, A.M., Bartoli, N., Regis, R.G., Otsmane, A., Morlier, J.: Efficient global optimization for high-dimensional constrained problems by using the Kriging models combined with the partial least squares method. Eng. Optim. 50(12), 2038–2053 (2018)MathSciNetCrossRef Bouhlel, A.M., Bartoli, N., Regis, R.G., Otsmane, A., Morlier, J.: Efficient global optimization for high-dimensional constrained problems by using the Kriging models combined with the partial least squares method. Eng. Optim. 50(12), 2038–2053 (2018)MathSciNetCrossRef
13.
go back to reference Box G. E. P.; Draper, N. R. (2007), Response Surfaces, Mixtures, and Ridge Analyses, John Wiley & Sons. pg. 414 Box G. E. P.; Draper, N. R. (2007), Response Surfaces, Mixtures, and Ridge Analyses, John Wiley & Sons. pg. 414
14.
go back to reference Candelieri, A., Archetti, F.: Sequential model-based optimization with black-box constraints: Feasibility determination via machine learning. In: AIP Conference Proceedings, p. 020010 (2019) Candelieri, A., Archetti, F.: Sequential model-based optimization with black-box constraints: Feasibility determination via machine learning. In: AIP Conference Proceedings, p. 020010 (2019)
15.
go back to reference Candelieri, A., Perego, R., Archetti, F.: Bayesian optimization of pump operations in water distribution systems. J. Global Optim. 71, 1–23 (2018)MathSciNetMATHCrossRef Candelieri, A., Perego, R., Archetti, F.: Bayesian optimization of pump operations in water distribution systems. J. Global Optim. 71, 1–23 (2018)MathSciNetMATHCrossRef
16.
go back to reference Cao, Y., Shen, Y.: Bayesian active learning for optimization and uncertainty quantification in protein docking (2019). Preprint arXiv:1902.00067 Cao, Y., Shen, Y.: Bayesian active learning for optimization and uncertainty quantification in protein docking (2019). Preprint arXiv:1902.00067
17.
go back to reference Chen, Y., Hoffman, M. W., Colmenarejo, S. G., Denil, M., Lillicrap, T.P., de Freitas, N.: Learning to learn for global optimization of black box functions (2016). Preprint arXiv:1611.03824 Chen, Y., Hoffman, M. W., Colmenarejo, S. G., Denil, M., Lillicrap, T.P., de Freitas, N.: Learning to learn for global optimization of black box functions (2016). Preprint arXiv:1611.03824
18.
go back to reference Costabal, F.S., Perdikaris, P., Kuhl, E., Hurtado, D.E.: Multi-fidelity classification using Gaussian processes: accelerating the prediction of large-scale computational models (2019). Preprint arXiv:1905.03406 Costabal, F.S., Perdikaris, P., Kuhl, E., Hurtado, D.E.: Multi-fidelity classification using Gaussian processes: accelerating the prediction of large-scale computational models (2019). Preprint arXiv:1905.03406
19.
go back to reference Costabal, F.S., Yao, J., Sher, A., Kuhl, E.: Predicting critical drug concentrations and torsadogenic risk using a multiscale exposure-response simulator. Progress Biophys. Molecular Biolo. 144, 61–76 (2019)CrossRef Costabal, F.S., Yao, J., Sher, A., Kuhl, E.: Predicting critical drug concentrations and torsadogenic risk using a multiscale exposure-response simulator. Progress Biophys. Molecular Biolo. 144, 61–76 (2019)CrossRef
20.
go back to reference Cozad, A., Sahinidis, N.V., Miller, D.C.: Learning surrogate models for simulation-based optimization. AIChE J. 60(6), 2211–2227 (2014)CrossRef Cozad, A., Sahinidis, N.V., Miller, D.C.: Learning surrogate models for simulation-based optimization. AIChE J. 60(6), 2211–2227 (2014)CrossRef
21.
go back to reference Digabel, S.L., Wild, S.M.: A taxonomy of constraints in simulation-based optimization (2015). Preprint arXiv:1505.07881 Digabel, S.L., Wild, S.M.: A taxonomy of constraints in simulation-based optimization (2015). Preprint arXiv:1505.07881
22.
go back to reference Dong, H., Song, B., Dong, Z., Wang, P.: SCGOSR: surrogate-based constrained global optimization using space reduction. Appl. Soft Comput. 65, 462–477 (2018)CrossRef Dong, H., Song, B., Dong, Z., Wang, P.: SCGOSR: surrogate-based constrained global optimization using space reduction. Appl. Soft Comput. 65, 462–477 (2018)CrossRef
23.
go back to reference Eggensperger, K., Lindauer, M., Hutter, F.: Pitfalls and best practices in algorithm configuration. J. Artif. Intell. Res. 64, 861–893 (2019)MathSciNetMATHCrossRef Eggensperger, K., Lindauer, M., Hutter, F.: Pitfalls and best practices in algorithm configuration. J. Artif. Intell. Res. 64, 861–893 (2019)MathSciNetMATHCrossRef
24.
go back to reference Feliot, P., Bect, J., Vazquez, E.: A Bayesian approach to constrained single-and multi-objective optimization. J. Global Optim. 67(1–2), 97–133 (2017)MathSciNetMATHCrossRef Feliot, P., Bect, J., Vazquez, E.: A Bayesian approach to constrained single-and multi-objective optimization. J. Global Optim. 67(1–2), 97–133 (2017)MathSciNetMATHCrossRef
25.
go back to reference Frazier, P.I., Powell, W.B., Dayanik, S.: A knowledge-gradient policy for sequential information collection. SIAM J. Control Optim. 47(5), 2410–2439 (2008)MathSciNetMATHCrossRef Frazier, P.I., Powell, W.B., Dayanik, S.: A knowledge-gradient policy for sequential information collection. SIAM J. Control Optim. 47(5), 2410–2439 (2008)MathSciNetMATHCrossRef
26.
go back to reference Gardner, J.R., Kusner, M.J., Xu, Z.E., Weinberger, K.Q., Cunningham, J.P.: Bayesian optimization with inequality constraints. In: International Conference on Machine Learning, pp. 937–945 (2014) Gardner, J.R., Kusner, M.J., Xu, Z.E., Weinberger, K.Q., Cunningham, J.P.: Bayesian optimization with inequality constraints. In: International Conference on Machine Learning, pp. 937–945 (2014)
27.
go back to reference Garnett, R., Osborne, M.A., Roberts, S.J.: Sequential Bayesian prediction in the presence of changepoints. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 345–352. ACM, New York (2009) Garnett, R., Osborne, M.A., Roberts, S.J.: Sequential Bayesian prediction in the presence of changepoints. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 345–352. ACM, New York (2009)
28.
go back to reference Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Ya.D.: Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003) Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Ya.D.: Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003)
29.
go back to reference Gergel, V., Barkalov, K., Lebedev, I., Rachinskaya, M., Sysoyev, A.: A flexible generator of constrained global optimization test problems. In: AIP Conference Proceedings, vol. 2070, no. 1, p. 020009. AIP Publishing, College Park (2019) Gergel, V., Barkalov, K., Lebedev, I., Rachinskaya, M., Sysoyev, A.: A flexible generator of constrained global optimization test problems. In: AIP Conference Proceedings, vol. 2070, no. 1, p. 020009. AIP Publishing, College Park (2019)
30.
go back to reference Ghoreishi, S.F., Allaire, D.: Multi-information source constrained Bayesian optimization. Struct. Multidiscip. Optim. 59, 1–15 (2018)MathSciNet Ghoreishi, S.F., Allaire, D.: Multi-information source constrained Bayesian optimization. Struct. Multidiscip. Optim. 59, 1–15 (2018)MathSciNet
32.
go back to reference Gramacy, R.B., Gray, G.A., Le Digabel, S., Lee, H.K., Ranjan, P., Wells, G., Wild, S.M.: Modeling an augmented Lagrangian for blackbox constrained optimization. Technometrics 58(1), 1–11 (2016)MathSciNetCrossRef Gramacy, R.B., Gray, G.A., Le Digabel, S., Lee, H.K., Ranjan, P., Wells, G., Wild, S.M.: Modeling an augmented Lagrangian for blackbox constrained optimization. Technometrics 58(1), 1–11 (2016)MathSciNetCrossRef
33.
go back to reference Grishagin, V., Israfilov, R.: Multidimensional constrained global optimization in domains with computable boundaries. In: CEUR Workshop Proceedings. Vol. 1513: Proceedings of the 1st Ural Workshop on Parallel, Distributed, and Cloud Computing for Young Scientists (Ural-PDC 2015).—Yekaterinburg, 2015 (2015) Grishagin, V., Israfilov, R.: Multidimensional constrained global optimization in domains with computable boundaries. In: CEUR Workshop Proceedings. Vol. 1513: Proceedings of the 1st Ural Workshop on Parallel, Distributed, and Cloud Computing for Young Scientists (Ural-PDC 2015).—Yekaterinburg, 2015 (2015)
34.
go back to reference Hernández-Lobato, J.M., Gelbart, M.A., Hoffman, M.W., Adams, R.P., Ghahramani, Z.: Predictive entropy search for Bayesian optimization with unknown constraints. In: 32nd International Conference on Machine Learning, ICML 2015, pp. 1699–1707. International Machine Learning Society (IMLS) (2015) Hernández-Lobato, J.M., Gelbart, M.A., Hoffman, M.W., Adams, R.P., Ghahramani, Z.: Predictive entropy search for Bayesian optimization with unknown constraints. In: 32nd International Conference on Machine Learning, ICML 2015, pp. 1699–1707. International Machine Learning Society (IMLS) (2015)
35.
go back to reference Hu, W., Fathi, M., Pardalos, P.M.: A multi-objective evolutionary algorithm based on decomposition and constraint programming for the multi-objective team orienteering problem with time windows. Appl. Soft Comput. 73, 383–393 (2018)CrossRef Hu, W., Fathi, M., Pardalos, P.M.: A multi-objective evolutionary algorithm based on decomposition and constraint programming for the multi-objective team orienteering problem with time windows. Appl. Soft Comput. 73, 383–393 (2018)CrossRef
36.
go back to reference Huyer, W., Neumaier, A.: SNOBFIT-stable noisy optimization by branch and fit. ACM Trans. Math. Softw. 35(2), 200 (2006)MathSciNet Huyer, W., Neumaier, A.: SNOBFIT-stable noisy optimization by branch and fit. ACM Trans. Math. Softw. 35(2), 200 (2006)MathSciNet
37.
go back to reference Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.A.: Efficient hyperparameter optimization for deep learning algorithms using deterministic RBF surrogates. In: Thirty-First AAAI Conference on Artificial Intelligence (2017) Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.A.: Efficient hyperparameter optimization for deep learning algorithms using deterministic RBF surrogates. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
38.
go back to reference Jain, P., Kar, P.: Non-convex optimization for machine learning. Found. Trends Mach. Learn. 10(3–4), 142–336 (2017)MATHCrossRef Jain, P., Kar, P.: Non-convex optimization for machine learning. Found. Trends Mach. Learn. 10(3–4), 142–336 (2017)MATHCrossRef
39.
40.
go back to reference Jones, D.R.: Large-scale multi-disciplinary mass optimization in the auto industry. In: MOPTA 2008 Conference (2008) Jones, D.R.: Large-scale multi-disciplinary mass optimization in the auto industry. In: MOPTA 2008 Conference (2008)
41.
go back to reference Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)MathSciNetMATHCrossRef Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)MathSciNetMATHCrossRef
42.
go back to reference Kandasamy, K., Dasarathy, G., Schneider, J., Poczos, B.: Multi-fidelity Bayesian optimisation with continuous approximations. In Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1799–1808 (2017). https://JMLR.org Kandasamy, K., Dasarathy, G., Schneider, J., Poczos, B.: Multi-fidelity Bayesian optimisation with continuous approximations. In Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1799–1808 (2017). https://​JMLR.​org
43.
go back to reference Kleijnen J.P.C.: Kriging: Methods and Applications. CentER Discussion Paper Series No. 2017-047 (2017) Kleijnen J.P.C.: Kriging: Methods and Applications. CentER Discussion Paper Series No. 2017-047 (2017)
44.
go back to reference Klein, A., Falkner, S., Springenberg, J.T., Hutter, F.: Learning curve prediction with Bayesian neural networks. In: Published as a Conference Paper at ICLR 2017 (2016) Klein, A., Falkner, S., Springenberg, J.T., Hutter, F.: Learning curve prediction with Bayesian neural networks. In: Published as a Conference Paper at ICLR 2017 (2016)
45.
go back to reference Koch, P., Bagheri, S., Konen, W., Foussette, C., Krause, P., Bäck, T.: A new repair method for constrained optimization. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 273–280. ACM, New York (2015) Koch, P., Bagheri, S., Konen, W., Foussette, C., Krause, P., Bäck, T.: A new repair method for constrained optimization. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 273–280. ACM, New York (2015)
46.
go back to reference Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Basic Eng. 86(1), 97–106 (1964)CrossRef Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Basic Eng. 86(1), 97–106 (1964)CrossRef
47.
go back to reference Lam, R., Willcox, K., Wolpert, D.H.: Bayesian optimization with a finite budget: An approximate dynamic programming approach. In: Advances in Neural Information Processing Systems, pp. 883–891 (2016) Lam, R., Willcox, K., Wolpert, D.H.: Bayesian optimization with a finite budget: An approximate dynamic programming approach. In: Advances in Neural Information Processing Systems, pp. 883–891 (2016)
48.
go back to reference Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods (2019). Preprint arXiv:1904.11585 Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods (2019). Preprint arXiv:1904.11585
49.
go back to reference Letham, B., Karrer, B., Ottoni, G., Bakshy, E. (2017). Constrained Bayesian optimization with noisy experiments. arXiv preprint arXiv:1706.07094. Letham, B., Karrer, B., Ottoni, G., Bakshy, E. (2017). Constrained Bayesian optimization with noisy experiments. arXiv preprint arXiv:1706.07094.
50.
go back to reference Letham, B., Karrer, B., Ottoni, G., Bakshy, E.: Constrained Bayesian optimization with noisy experiments. Bayesian Anal. 14(2), 495–519 (2019)MathSciNetMATHCrossRef Letham, B., Karrer, B., Ottoni, G., Bakshy, E.: Constrained Bayesian optimization with noisy experiments. Bayesian Anal. 14(2), 495–519 (2019)MathSciNetMATHCrossRef
51.
go back to reference Martì, R., Pardalos, P.M., Resende, M.G. (Eds.): Handbook of Heuristics. Springer, Berlin (2018)MATH Martì, R., Pardalos, P.M., Resende, M.G. (Eds.): Handbook of Heuristics. Springer, Berlin (2018)MATH
52.
go back to reference Mehdad, E., Kleijnen, J.P.: Efficient global optimisation for black-box simulation via sequential intrinsic Kriging. J. Oper. Res. Soc. 69(11), 1725–1737 (2018)CrossRef Mehdad, E., Kleijnen, J.P.: Efficient global optimisation for black-box simulation via sequential intrinsic Kriging. J. Oper. Res. Soc. 69(11), 1725–1737 (2018)CrossRef
53.
go back to reference Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seeking the extremum. Towards global optimization, 2 (117–129), 2, Dixon, L.C.W., Szego, G.P. (eds.) (1978) Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seeking the extremum. Towards global optimization, 2 (117–129), 2, Dixon, L.C.W., Szego, G.P. (eds.) (1978)
54.
go back to reference Moreno, J.D., Zhu, Z.I., Yang, P.C., Bankston, J.R., Jeng, M.T., Kang, C., Wang, L., Bayer, J.D., Christini, D.J., Trayanova, N.A., Ripplinger, C.M., Kass, R.S., Clancy, C.E.: A computational model to predict the effects of class I anti-arrhythmic drugs on ventricular rhythms. Sci. Transl. Med. 3(98), 98ra83 (2011) Moreno, J.D., Zhu, Z.I., Yang, P.C., Bankston, J.R., Jeng, M.T., Kang, C., Wang, L., Bayer, J.D., Christini, D.J., Trayanova, N.A., Ripplinger, C.M., Kass, R.S., Clancy, C.E.: A computational model to predict the effects of class I anti-arrhythmic drugs on ventricular rhythms. Sci. Transl. Med. 3(98), 98ra83 (2011)
55.
go back to reference Nuñez, L., Regis, R.G., Varela, K.: Accelerated random search for constrained global optimization assisted by radial basis function surrogates. J. Comput. Appl. Math. 340, 276–295 (2018)MathSciNetMATHCrossRef Nuñez, L., Regis, R.G., Varela, K.: Accelerated random search for constrained global optimization assisted by radial basis function surrogates. J. Comput. Appl. Math. 340, 276–295 (2018)MathSciNetMATHCrossRef
56.
go back to reference Ortega, P.A., Wang, J.X., Rowland, M., Genewein, T., Kurth-Nelson, Z., Pascanu, R., et al.: Meta-learning of Sequential Strategies (2019). Preprint arXiv:1905.03030 Ortega, P.A., Wang, J.X., Rowland, M., Genewein, T., Kurth-Nelson, Z., Pascanu, R., et al.: Meta-learning of Sequential Strategies (2019). Preprint arXiv:1905.03030
58.
go back to reference Peherstorfer, B., Willcox, K., Gunzburger, M.: Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev. 60(3), 550–591 (2018)MathSciNetMATHCrossRef Peherstorfer, B., Willcox, K., Gunzburger, M.: Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev. 60(3), 550–591 (2018)MathSciNetMATHCrossRef
59.
go back to reference Perdikaris, P., Venturi, D., Karniadakis, G.E.: Multifidelity information fusion algorithms for high-dimensional systems and massive data sets. SIAM J. Sci. Comput. 38(4), B521–B538 (2016)MathSciNetMATHCrossRef Perdikaris, P., Venturi, D., Karniadakis, G.E.: Multifidelity information fusion algorithms for high-dimensional systems and massive data sets. SIAM J. Sci. Comput. 38(4), B521–B538 (2016)MathSciNetMATHCrossRef
61.
go back to reference Regis, R.G.: A Survey of Surrogate Approaches for Expensive Constrained Black-Box Optimization. In: Le Thi, H., Le, H., Pham Dinh, T. (eds.) Optimization of Complex Systems: Theory, Models, Algorithms and Applications, pp. 37–47. WCGO 2019. Springer, Cham (2020) Regis, R.G.: A Survey of Surrogate Approaches for Expensive Constrained Black-Box Optimization. In: Le Thi, H., Le, H., Pham Dinh, T. (eds.) Optimization of Complex Systems: Theory, Models, Algorithms and Applications, pp. 37–47. WCGO 2019. Springer, Cham (2020)
62.
go back to reference Regis, R.G., Shoemaker, C.A.: Constrained global optimization of expensive black box functions using radial basis functions, J. Global Optim. 31, 153–171 (2005)MathSciNetMATHCrossRef Regis, R.G., Shoemaker, C.A.: Constrained global optimization of expensive black box functions using radial basis functions, J. Global Optim. 31, 153–171 (2005)MathSciNetMATHCrossRef
63.
go back to reference Regis, R.G., Shoemaker, C.A.: A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J. Comput. 19(4), 497–509 (2007)MathSciNetMATHCrossRef Regis, R.G., Shoemaker, C.A.: A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J. Comput. 19(4), 497–509 (2007)MathSciNetMATHCrossRef
64.
go back to reference Regis, R.G., Shoemaker, C.A.: Parallel radial basis function methods for the global optimization of expensive functions. Eur. J. Oper. Res. 182(2), 514–535 (2007)MathSciNetMATHCrossRef Regis, R.G., Shoemaker, C.A.: Parallel radial basis function methods for the global optimization of expensive functions. Eur. J. Oper. Res. 182(2), 514–535 (2007)MathSciNetMATHCrossRef
65.
go back to reference Regis, R.G., Shoemaker, C.A.: Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization. Eng. Optim. 45(5), 529–555 (2013)MathSciNetCrossRef Regis, R.G., Shoemaker, C.A.: Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization. Eng. Optim. 45(5), 529–555 (2013)MathSciNetCrossRef
66.
go back to reference Rudenko, L.I.: Objective functional approximation in a partially defined optimization problem. J. Math. Sci. 72(5), 3359–3363 (1994)MathSciNetCrossRef Rudenko, L.I.: Objective functional approximation in a partially defined optimization problem. J. Math. Sci. 72(5), 3359–3363 (1994)MathSciNetCrossRef
67.
go back to reference Sacher, M., Duvigneau, R., Le Maitre, O., Durand, M., Berrini, E., Hauville, F., Astolfi, J.A.: A classification approach to efficient global optimization in presence of non-computable domains. Struct. Multidiscip. Optim. 58(4), 1537–1557 (2018)MathSciNetCrossRef Sacher, M., Duvigneau, R., Le Maitre, O., Durand, M., Berrini, E., Hauville, F., Astolfi, J.A.: A classification approach to efficient global optimization in presence of non-computable domains. Struct. Multidiscip. Optim. 58(4), 1537–1557 (2018)MathSciNetCrossRef
68.
go back to reference Sen, S., Deng, Y.: Learning enabled optimization: Towards a fusion of statistical learning and stochastic programming. INFORMS Journal on Optimization (2018) Sen, S., Deng, Y.: Learning enabled optimization: Towards a fusion of statistical learning and stochastic programming. INFORMS Journal on Optimization (2018)
69.
go back to reference Sergeyev, Y.D., Kvasov, D.E., Khalaf, F.M.: A one-dimensional local tuning algorithm for solving GO problems with partially defined constraints. Optim. Lett. 1(1), 85–99 (2007)MathSciNetMATHCrossRef Sergeyev, Y.D., Kvasov, D.E., Khalaf, F.M.: A one-dimensional local tuning algorithm for solving GO problems with partially defined constraints. Optim. Lett. 1(1), 85–99 (2007)MathSciNetMATHCrossRef
70.
go back to reference Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: Emmental-type GKLS-based multiextremal smooth test problems with non-linear constraints. In: International Conference on Learning and Intelligent Optimization, pp. 383–388. Springer, Cham (2017) Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S.: Emmental-type GKLS-based multiextremal smooth test problems with non-linear constraints. In: International Conference on Learning and Intelligent Optimization, pp. 383–388. Springer, Cham (2017)
71.
go back to reference Sra, S., Nowozin, S., Wright, S.J. (Eds.): Optimization for Machine Learning. Mit Press, Cambridge (2012)MATH Sra, S., Nowozin, S., Wright, S.J. (Eds.): Optimization for Machine Learning. Mit Press, Cambridge (2012)MATH
72.
go back to reference Srinivas, N., Krause, A., Kakade, S. M., & Seeger, M. W. (2012). Information-theoretic regret bounds for gaussian process optimization in the bandit setting. IEEE Transactions on Information Theory, 58(5), 3250–3265MathSciNetMATHCrossRef Srinivas, N., Krause, A., Kakade, S. M., & Seeger, M. W. (2012). Information-theoretic regret bounds for gaussian process optimization in the bandit setting. IEEE Transactions on Information Theory, 58(5), 3250–3265MathSciNetMATHCrossRef
73.
go back to reference Sui, Y., Gotovos, A., Burdick, J., & Krause, A. (2015, June). Safe exploration for optimization with Gaussian processes. In International Conference on Machine Learning (pp. 997–1005). PMLR Sui, Y., Gotovos, A., Burdick, J., & Krause, A. (2015, June). Safe exploration for optimization with Gaussian processes. In International Conference on Machine Learning (pp. 997–1005). PMLR
74.
go back to reference Tsai, Y.A., Pedrielli, G., Mathesen, L., Zabinsky, Z.B., Huang, H., Candelieri, A., Perego, R.: Stochastic optimization for feasibility determination: An application to water pump operation in water distribution network. In: Proceedings of the 2018 Winter Simulation Conference, pp. 1945–1956. IEEE Press, New York (2018) Tsai, Y.A., Pedrielli, G., Mathesen, L., Zabinsky, Z.B., Huang, H., Candelieri, A., Perego, R.: Stochastic optimization for feasibility determination: An application to water pump operation in water distribution network. In: Proceedings of the 2018 Winter Simulation Conference, pp. 1945–1956. IEEE Press, New York (2018)
75.
go back to reference Volpp, M., Fr’́ohlich, L., Doerr, A., Hutter, F., Daniel, C.: Meta-Learning Acquisition Functions for Bayesian Optimization (2019). Preprint arXiv:1904.02642 Volpp, M., Fr’́ohlich, L., Doerr, A., Hutter, F., Daniel, C.: Meta-Learning Acquisition Functions for Bayesian Optimization (2019). Preprint arXiv:1904.02642
76.
go back to reference Wang, Y., Shoemaker, C.A.: A General Stochastic Algorithmic Framework for Minimizing Expensive Black Box Objective Functions Based on Surrogate Models and Sensitivity Analysis (2014). Preprint arXiv:1410.6271 Wang, Y., Shoemaker, C.A.: A General Stochastic Algorithmic Framework for Minimizing Expensive Black Box Objective Functions Based on Surrogate Models and Sensitivity Analysis (2014). Preprint arXiv:1410.6271
77.
go back to reference Williams, C.K., Rasmussen, C.E.: Gaussian Processes for Machine Learning, vol. 2, No. 3, p. 4. MIT Press, Cambridge (2006) Williams, C.K., Rasmussen, C.E.: Gaussian Processes for Machine Learning, vol. 2, No. 3, p. 4. MIT Press, Cambridge (2006)
78.
go back to reference Wilson, Z.T., Sahinidis, N.V.: The ALAMO approach to machine learning. Comput. Chem. Eng. 106, 785–795 (2017)CrossRef Wilson, Z.T., Sahinidis, N.V.: The ALAMO approach to machine learning. Comput. Chem. Eng. 106, 785–795 (2017)CrossRef
79.
go back to reference Wilson, Z.T., Sahinidis, N.V.: The ALAMO approach to machine learning. Comput. Chem. Eng. 106, 785–795 (2017)CrossRef Wilson, Z.T., Sahinidis, N.V.: The ALAMO approach to machine learning. Comput. Chem. Eng. 106, 785–795 (2017)CrossRef
80.
go back to reference Zabinsky, Z.B.: Stochastic Adaptive Search for Global Optimization, vol. 72. Springer Science & Business Media, Berlin (2013)MATH Zabinsky, Z.B.: Stochastic Adaptive Search for Global Optimization, vol. 72. Springer Science & Business Media, Berlin (2013)MATH
81.
go back to reference Zhang, Z., Buisson, M., Ferrand, P., Henner, M.: Databases coupling for morphed-mesh simulations and application on fan optimal design. In: World Congress on Global Optimization, pp. 981–990. Springer, Cham (2019) Zhang, Z., Buisson, M., Ferrand, P., Henner, M.: Databases coupling for morphed-mesh simulations and application on fan optimal design. In: World Congress on Global Optimization, pp. 981–990. Springer, Cham (2019)
82.
go back to reference Ẑilinskas, A., Zhigljavsky, A.: Stochastic global optimization: a review on the occasion of 25 years of Informatica. Informatica 27(2), 229–256 (2016) Ẑilinskas, A., Zhigljavsky, A.: Stochastic global optimization: a review on the occasion of 25 years of Informatica. Informatica 27(2), 229–256 (2016)
Metadata
Title
Learning Enabled Constrained Black-Box Optimization
Authors
F. Archetti
A. Candelieri
B. G. Galuzzi
R. Perego
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-66515-9_1

Premium Partner