Skip to main content
Top

2018 | OriginalPaper | Chapter

4. Less Common Nonferrous Metals

Author : François Cardarelli

Published in: Materials Handbook

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents the history, natural occurrence, most common minerals and ores, extraction processes and industrial preparation, applications and uses, and major physical and chemical properties of the less common metals, namely, the alkali and alkaline-earth metals, the reactive and refractory metals, the precious and platinum group metals, the rare earth metals and finally the actinides.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Grady, H.R. (1980) Lithium metal for the battery industry. J. Power Sources, 5, 127–135.
 
2
Saito, E.; Dirian, G. (1962) Process for the isotopic enrichment of lithium by chemical exchange. Brit. Pat. 902,755, Aug. 9.
 
3
Ruedl, E.; Coen, V.; Sasaki, T.; Kolbe, H. (1998) Intergranular lithium penetration of low Ni-Cr-Mn austenitic stainless steels. J. Nuclear Mater., 110, 28–36.
 
4
Hoffmann, E.E.; Mandly, W.D. (1957) Corrosion resistance of the metal and alloys to sodium and lithium. US Atomic Energy Comm., ORNL-2271, Oak Ridge National Laboratory, p. 11.
 
5
Beskorovainyi, N.M.; Ivanov, V.K. (1967) Mechanism underlying the corrosion of carbon steels in lithium. – in Emelíyanov, V.S.; and Evstyukin, A.I. (eds.) High Purity Metals and Alloys. Consultants Bureau, pp. 120–129.
 
6
The maximum working temperatures mentioned correspond to molten lithium with an extra low level of impurities.
 
7
Klueh, R.L. (1974) Oxygen effects on the corrosion of niobium and tantalum by liquid lithium. Met. Trans. 5, 875–879.
 
8
Klueh, R.L. (1973) Effect of Oxygen on the Corrosion of Niobium and Tantalum by Liquid Lithium. U.S. Atomic Energy Comm. Report ORNL-TM-4069, Oak Ridge National Laboratory.
 
9
Smith, D.L.; Natesan, K. (1974) Influence of Nonmetallic Impurity Elements on the Compatibility of Liquid Lithium with Potential Containment Materials. Nucl. Technol. 22, 392–404.
 
10
Singh, R.N. (1976) Compatibility of ceramics with liquid Na and Li. J. Am. Ceram. Soc., 59, 112–115.
 
11
Weeks, M.E. (1956) Discovery of the Elements, 6th ed. Journal of Chemical Education Press, Easton, PA, pp. 484–490.
 
12
Hajek, J. (1949) French Pat., Oct. 8
 
13
Herbert, D.; Ulam, J. (1949) French Pat., Nov. 26
 
14
Mahi, P.; Smeets, A.A.; Fray, D.J.; Charles, J.A. (1986) Lithium: metal of the future. J. Met. 38, 20–26.
 
15
Haicang, L.; Wei, Z. (1995) Research, manufacture and applications of lithium metal materials in China. Rare Metals 14, 313–316.
 
16
Averill, W.A.; Olson, D. (1978) A review of extractive processes for lithium from ores and brines. Energy, 3, 305–313.
 
17
Warren, (1896) Chem. News 74, 6.
 
18
Hanson, U.S. Pat. 2,028,390 (1936).
 
19
Gunz, (1893) Compt. Rend. Acad. Sc. 117, 732.
 
20
Ruff; Johannsen, (1906) Z. Electrochem. 12, 186.
 
21
Muller, J.; Bauer, R.; Sermond, B.; Dolling, E. (Metallgesellschaft Aktiengesellschaft) (1988) Process and apparatus for producing high-purity lithium metal by fused-salt electrolysis. US Patent 4,740,279 April 26, 1988.
 
22
Weeks, M.E.; Leicester, H.M. (1968) Discovery of the Elements, 7th ed. Journal of Chemical Education Press, Easton, PA.
 
23
Be extremely careful and never taste beryllium compounds, because beryllium salts are highly poisonous.
 
24
Schwartz, U.S. Pat. 3,170,812 (1970).
 
25
Ferrosilicon is usually prepared by direct melting of quartzite and iron scrap in an arc melting furnace.
 
26
Curie, P.; Curie, M.; Debièrne (1898) Compt. Rend., 127,1215.
 
27
Cardarelli, F. (2005) Encyclopaedia of Scientific Units, Weights and Measures. Their SI Equivalences and Origins. Springer, Berlin Heidelberg New York.
 
28
(McIntyre, D.R.; Dillon, C.P. (1986) Pyrophoric Behavior and Combustion of Reactive Metals. MTI Publications/NACE, Huntington, WV)
 
29
Hunter, M.A. (1910) J. Am. Chem. Soc., 32, 330.
 
30
Kroll, W.J. (1940) Method for manufacturing titanium and alloys thereof. US Patent 2,205,854; 25 June 1940.
 
31
Now called the US Geological Survey
 
32
Kroll, W.J. (1940) The production of ductile titanium. Trans. Electrochem. Soc., 112, 35–47.
 
33
Guéguin, M.; Cardarelli, F. (2006) Chemistry and mineralogy of titania-rich slags. Part 1. Hemo-ilmenite, sulfate, and upgraded titania slags. Mineral Process. Extract. Metall. Rev., 27, 1–58.
 
34
Gilman, S.K.; Taylor, R.K.A. (2001) The Future of ilmenite beneficiation technologies. In: Heavy Mineral Conference 2001, Melbourne Australia.
 
35
Becher, R.G. (1963) The removal of iron from ilmenite. Australian Patent 247110, 16 September 1963.
 
36
The amount of titanium metal produced as crystal bars by the van Arkel–de Boer process is so negligible industrially in comparison with that produced by the Kroll process that it was not taken into account here.
 
37
At plants located in countries of the former Soviet Union and in China, the chlorination of titania-rich feedstock is performed in a molten-salt bath made of NaCl–KCl.
 
38
Hunter, M.A. J. Am. Chem. Soc. 32 (1910)330.
 
39
In a certain aspect the Kroll and Hunter metallothermic reduction processes can be seen as indirect electrowinning processes that rely on fused salt electrolytic production of magnesium or sodium for reduction of TiCl4.
 
40
Battelle Columbus Laboratories (1975) Interim Report on Energy Use Patterns in Metallurgical Processing. Columbus, OH.
 
41
Metal Bulletin, February 2001.
 
42
Anonymous (1974) National Materials Advisory Board Committee on Direct Reduction Processes for the Production of Titanium Metal. 1974. Report # NMAB-304, National Academy of Sciences, Washington, DC.
 
43
ASTM B299-99. Standard specification for titanium sponge. American Society for Testing and Materials (ASTM)
 
44
Gambogi, J. (2001) Titanium: consolidation continues through 1999. Eng. Min. J., 42, 42–44.
 
45
From Metal Bulletin. Nonferrous primary metals price list in January 2001 issue.
 
46
Rosskill Information Services (1999) The Economics of Titanium Metal, 2nd. ed. Roskill Information Services, London, UK.
 
47
Froes, F.H.; Eylon, D. (1990) Powder metallurgy of titanium alloys. Int. Mater. Rev., 35, 162.
 
48
Katrak, F. (1997) Potential Growth in Non-Aerospace Usage of Titanium and Implication for Titanium Process and Product R&D. Charles River, Boston.
 
49
Hakko, J.B. (1979) Tantalum metal powder. US Patent 4,141,719, February 27, 1979.
 
50
Borok, B.A. (1965) Trans. of Central Research Institute for Ferrous Metallurgy, Moscow, Russia. 43, 69–80.
 
51
Passivation is required to prevent pyrophoricity.
 
52
Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate. ASTM B265–99 (8 pp)
 
53
Gambogi, J. (1993) Annual Report: Titanium-1992. U.S. Bureau of Mines, Washington, D.C., p. 1.
 
54
Gambogi, J. (1995) Titanium and titanium dioxide. In: Mineral Commodity Summaries. U.S. Bureau of Mines, Washington, D.C., p. 180.
 
55
Klaproth, M.H. (1789) Ann. Chim. Phys., 6, 1.
 
56
Vauquelin, N.L. (1797) Ann. Chim. Phys., 22, 179.
 
57
Berzelius, J.J. (1824) Ann. Chim. Phys., 26, 43.
 
58
Van Arkel, A.E., de Boer, J.H. (1925) Z. Anorg. Chem., 148, 345.
 
59
Yau, T.-L.; Bird, K.W. (1995) Manage corrosion with zirconium. Chem. Eng. Prog., 91, 42–46.
 
60
Rankama, K.; Sahama, T.G. (1968) Geochemistry. University of Chicago Press, Chicago, pp. 594–603.
 
61
Clark, R.J.H. (1968) The Chemistry of Titanium and Vanadium. An Introduction to the Chemistry of the Early Transition Elements. In: Robinson, P.L. (ed.) (1968) Monograph 11 in Topics in Inorganic and General Chemistry. Elsevier, Amsterdam.
 
62
Hodgson, G.W.; Baker, B.L.; Peake, E. (1967) Geochemistry of Porphyrins. In: Nagy, B.; Colombo, U. (eds.) Fundamental Aspects of Petroleum Geochemistry. Elsevier, Amsterdam, pp. 177–259.
 
63
Tissot, B.P.; Welte, D.H. (1978) Petroleum Formation and Occurrence. Springer, Berlin Heidelberg New York.
 
64
Marden, J.W.; Rich, M.N. (1927) Vanadium. Ind. Eng. Chem., 19, 786–788.
 
65
McKechnie, R.K.; Seybolt, A.U. (1950) Preparation of ductile vanadium by calcium reduction. J. Electrochem. Soc., 97, 311–315.
 
66
Boehni, H. (1967) Corrosion behavior of various rare metals in aqueous acid solutions with special consideration of niobium and tantalum. Schweiz Arch. Angew. Wiss. Tech., 33, 339–363.
 
67
Bishop, C.R.; Stern, M. (1905) Hydrogen embrittlment of tantalum in aqueous media. Corrosion 17, 379t–385t.
 
68
von Bolton, W. (1905) Z. Elektrochem. 11, 45.
 
69
Source: Rembar Company and H.C. Starck GmbH
 
70
Boehni, H. (1967) Corrosion behavior of various rare metals in aqueous acid solutions with special consideration of niobium and tantalum. Schweiz Arch. Angew. Wiss. Tech., 33, 339–363.
 
71
Bishop, C.R.; Stern, M. (1961) Hydrogen embrittlement of tantalum in aqueous media. Corrosion 17, 379t–385t.
 
72
von Bolton, W. (1905) Z. Elektrochem., 11, 45.
 
73
Driggs, F.H.; Lilliendahl, W.C. (1931) Preparation of metals powders by electrolysis of fused salts. III. Tantalum. Ind. Eng. Chem., 23, 634–637.
 
74
Norton Grinding Wheel Co. (1958) Electrolytic production of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, or W. British Patent 792,716.
 
75
Ervin, Jr., G.; Ueltz, H.F.G. (1958) Apparatus for continuous production of refractory metal by electrolysis of fused salts. US Patent 2,837,478.
 
76
Ervin, Jr. G.; Ueltz, H.F.G. (1960) Electrolytic preparation of Th, U, Nb, Ta, V, W, Mo, and Cr. German Patent 1,078,776.
 
77
Ueltz, H.F.G. (1960) Electrolytic extraction of refractory metals of groups IV, V, and VI from their Carbide. US Patent 2,910,021.
 
78
Sarla, R.M.; Schneidersmann, E.O. (1960) Fused salt electrolytic cell for producing high-melting reactive metals, such as tantalum. US Patent 2,957,816.
 
79
Union Carbide Corporation (1966) Cell for plating heat resistant metals from molten salt mixtures. Netherlands Application 6,516,263.
 
80
Horizon Titanium Corp. (1957) Electrodeposition of Ti, Zr, Hf, V, Ta, and Nb. British Patent 778,218.
 
81
Horizon Titanium Corp. (1958) Formation of hard intermetalic coatings from electrodeposited layers of refractory metals. British Patent 788,804.
 
82
Horizon Titanium Corp. (1958) Electrodeposition of Ti, Zr, Hf, Ta, V, Nb, Cr, Mo, and W. Bristish Patent 788,295.
 
83
Horizon Titanium Corp. (1958) Fused-salt bath for electrodeposition of multivalent metals: Ti, Nb, Ta, and V. British Patent 791,151.
 
84
Merlub-Sobel, M.; Arnoff, M.J.; Sorkin, J.L. (1959) Chlorination and electrolysis of metal oxides in fused salts baths. US Patent 2,870,073.
 
85
Wainer, E. (1959) Transition-metal halides for electrodeposition of transition metals. US Patent 2,894,886.
 
86
Timax Corp. (1960) Electrolytic preparation of pure niobium and tantalum. British Patent 837,722.
 
87
Huber, K.; Fost, E. (1960) Preparation of niobium and tantalum by melt electrolysis. German Patent 1,092,217.
 
88
Kern, F. (1961) Electrolytic production of niobium and tantalum. US Patent 2,981,666.
 
89
Kern, F. (1962) Tantalum powders by electrolysis. German Patent 1,139,284.
 
90
Scheller, W.; Blumer, M. (1962) Niobium and tantalum. German Patent 1,139,982.
 
91
Pruvot, E. (1959) Electrolytic manufacture of tantalum. French Patent 1,199,033.
 
92
Société Générale du Vide (1964) Protective coating. Netherlands Application 6,400,547.
 
93
Nishio, Y.; Oka, T.; Ohmae, T.; Yoshida, Y. (1971) Steel plated with tantalum or a tantalum alloy. German Patent 2,010,785.
 
94
Paschen, P.; Koeck, W. (1990) Fused salt electrolysis of tantalum. In: Refractory Metals: Extraction, Processing, and Applications. The Minerals, Metals, and Materials Society, TMS Publishing, Warrendale, PA, pp. 221–230.
 
95
Mellors, G.W.; Senderoff, S. (1964) Electrolytic deposit of refractory metals. Belgium Patent 640,801.
 
96
cardarelli, F. Process for upgrading tantalum and niobium ores and concentrates with the recovery of manganese and rare earths oxides Canadian Patent 2,849,787, May 5, 2015.
 
97
Source: Rembar Company and COMETECH
 
98
Danzig, I.F.; Dempsey, R.M.; La Conti, A.B. (1971) Characteristic of tantalided and hafnided samples in highly corrosive electrolyte solutions. Corrosion 27, 55–62.
 
99
Christopher, D. (1961) Bimetallic pipe. Mech. Eng., 83, 68–71.
 
100
Whiting, K.A. (1964) Cladding copper articles with niobium or tantalum and platinum outside. US Patent 3,156,976.
 
101
Cardarelli, F.; Taxil, P.; Savall, A. (1996) Tantalum protective thin coating techniques for the chemical process industry: molten salts electrocoating as a new alternative. Int. J. Refract. Metals Hard Mater., 14, 365–881.
 
102
Grams, W.R. (1968) Cladding the cleaned reactive refractory metals with lower-melting metals in the absence of a reactive atmosphere. US Patent 3,409,978.
 
103
Krupin, A.V. (1968) Rolling metal in vacuum. Mosk. Inst. Stali. Splavov, 52, 153–163.
 
104
Chelius, J. (1968) Explosion-clad sheet metal for corrosion-resistant chemical equipment. Weikst. Korros., 19, 307–312.
 
105
Bergmann, O.R.; Cowan, G.R.; Holtzman, A.H. (1970) Metallic multilayered composites bonded by explosion detonation shock. US Patent 3,493,353.
 
106
Glatz, B. (1970) Explosive cladding of metals. Huntn. Listy 25, 398–406.
 
107
Bouckaert, G.P.; Hix, H.B.; Chelius, J. (1974) Explosive-bonded tantalum-steel vessels. DECHEMA Monograph 76, 9–22.
 
108
Umanshii, Ya.S.; Urazaliev, U.S.; Ivanov, R.D. (1972) Formation of tantalum thin films prepared by cathodic sputtering. Fiz. Metal. Metalloved, 33, 196–199.
 
109
Fitzer, E.; Kehr, D. (1973) Processing studies of the chemical vapor deposition of niobium and tantalum. In: Proceedings 4th International Conference CVD, pp. 144–146.
 
110
Spitz, J.; Chevallier, J. (1975) Comparative study of tantalum deposition by chemical vapor deposition and electron beam vacuum evaporation. In: Proceedings 5th International Conference CVD, pp. 204–216.
 
111
Spitz, J. (1973) Proceedings 5th European Congress on Corrosion, Paris.
 
112
Beguin, C.; Horrath, E.; Perry, A.J. (1977) Tantalum coating of mild steel by CVD. Thin Solid Films 46, 209–212.
 
113
Bobst, J. (1971) Niobium and tantalum electroplating. German Patent 2,064,586.
 
114
Lantelme, F.; Inman, D.; Lovering, D.G. (1984) Electrochemistry-I. In: Lovering, D.G.; Gale, R.J. (eds.) Molten Salt Techniques, Vol. 2. Plenum, New York, pp. 138–220.
 
115
Sadoway, D.R. (1990) The synthesis of refractory-metal compounds by electrochemical processing. In: Non Aqueous Media in Refractory Metals: Extraction, Processing, and Applications. The Minerals, Metals, and Materials Society, TMS Publishing, Warrendale, PA, pp. 213–220.
 
116
Delimarskii, Iu.K.; Markov, B.F. (1961) Electrochemistry of Fused Salts. Sigma, New York.
 
117
Cook, N.C. (1964) Metalliding. Sci. Am. 221, 38–46.
 
118
Cook, N.C. (1962) Beryllide coatings on metals. US Patent 3,024,175.
 
119
Cook, N.C. (1962) Boride coatings on metals. US Patent 3,024,176.
 
120
Cook, N.C. (1962) Silicide coatings on metals. US Patent 3,024,177.
 
121
Cook, N.C. (1966) Corrosion-resistant chromide coating. US Patent 3,232,853.
 
122
Ilyushchenko, N.G.; Antinogenov, A.I.; Belyaeva, G.I.; Plotnikova, A.F.; Korlinov, N.I. (1968) Transactions. 4-ogo Vsesoyuzn. Soveshch., 105.
 
123
Mellors, G.W.; Senderoff, S. (1964) Electrolytic deposit of refractory metals. Belgian Patent 640,801.
 
124
Mellors, G.W.; Senderoff, S. (1968) Novel compounds of tantalum and niobium. US Patent 3,398,068.
 
125
Mellors, G.W.; Senderoff, S. (1969) Electrodeposition of Zr, Ta, Nb, Cr, Hf, W, Mo, V and their alloys. US Patent 3,444,058.
 
126
Balikhin, V.S. (1974) Electroplating of protective tantalum coating. Zasch. Metal., 10, 459–460.
 
127
Balikhin, V.S.; Sukhoverkov, I.N. (1974) Tantalum electroplating. Tsvet. Metal., 3, 70–71.
 
128
Taxil, P.; Mahenc, J. (1987) Formation of corrosion resistant layer by electrodeposition of refractory metals or by alloys electrowinning. J. Appl. Electrochem., 17, 261–269.
 
129
Source: Rembar Company and CSM
 
130
Source: International Tungsten Industry Association, 1997
 
131
Noddack, W.; Tacke, I.; Berg, O. (1925) Naturwissenshaften, 13, 567–574.
 
132
Ellis, R. (2004) Rhenium: a truly modern metal. Min. Mag., February, pp. 32–33.
 
133
Ferron, C.G.; and Seeley, L.E. Rhenium Recovery. United States Patent 8,956,582 B2, February 17, 2015.
 
134
Cardarelli, F. (2005) Encyclopaedia of Scientific Units, Weights and Measures: Their SI Equivalences and Origins. Springer, London New York.
 
135
Fulton, C.H.; and Sharwood, W.J. (1929) A Manual of Fireassaying, 3rd. Ed. McGraw-Hill, New York.
 
136
Lunge, G.; Naville, J. (1879) Traité de la Grande Industrie Chimique, Tome I. Acide Sulfurique et Oléum. Masson & Cie, Paris.
 
137
kosterin, A.V.; alekhina, K.N.; and kizjura, V.E. Une monazite d’origine inhabituelle. Academie des Sciences d’URSS, Section Siberienne, Filiale d’Extreme Orient. French translation by kamarov, V.L. Tome 15 Geologie 23–26, 1962.
 
138
rosenblum, S.; and mosier, E.L. (1983) Mineralogy and Occurrence of Europium-Rich Dark Monazite. Geological Survey Professional Paper 1181, United States Government Printing Office, Washington DC.
 
139
parfenov, A. (1963) Decouverte de monazite grise en nodules dans les concentres alluvionaires de Bretagne. Etude BRGNM 6086/MPMG.
 
140
donnot, M.; guigues, J.; lulzac, Y.; magnien, A.; parfenoff, A.; and picot, P. Un nouveau type de gisement d’europium: la monazite grise a europium en nodules dans les schistes paleozoiques de Bretagne. Vol. 8, Page 8 (1973).
 
141
braconnier, J.J.; and rollat, A. Method for recovering rare-earth elements from a solid mixture containing a halophosphate and a compound of one or more rare-earth elements. United States Patent 8,501,124 B2, August 6th, 2013.
 
142
Otto, R.; and Wojtalewicz-Kasprzak, A. Method for recovery of rare earths from fluorescent lamps. United States Patent 7,976,798 B2, July 12th, 2013.
 
143
cardarelli, F. Process for recovering rare earth oxides from phosphors, fluorescent lamps and light bulbs, cathode ray tubes and other industrial wastes. Canadian Patent 2,878,486, February 9th, 2016
 
144
Nilson, L.F. (1879) About Ytterbine, the New Earth of Marignac. Comptes Rendus, 88, 642–647.
 
145
Nilson, L.F. (1880) About scandium, a new element. Comptes Rendus, 91, 118–121.
 
146
Raade, G. (2003) Scandium. Chem. Eng. Prog. September 8, 68.
 
147
Kramer, L.S.; Tack, W.T. and Fernandes, M. (1997) Scandium in aluminum alloys. Advanced Materials & Processes., 152, 4.
 
148
Toropova, L.S.; Eskin, D.G.; Kharakterova, M.L.; Dobatkina, T.V. (1998) Advanced Aluminum Alloys Containing Scandium: Structure and Properties. Gordon and Breach, New York.
 
149
Péligot, E.-M. (1841) C.R. Acad. Sci., 12, 735.
 
150
Péligot, E.-M. (1842) Ann. Chim. Phys., 5, 5.
 
151
French acronym for uranium naturel graphite gaz
 
152
cantor, M.O. Mercury lost in the gastrointestinal tract. Journal of The American Medical Association, 146(6)(1951)560–561.
 
153
diaz, J.C. (2013) An Assessment of Primary and Secondary Mercury Supplies in Mexico. Commission for Environmental Cooperation (cec.org), Montreal, QC, Canada.
 
Metadata
Title
Less Common Nonferrous Metals
Author
François Cardarelli
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-38925-7_4

Premium Partners